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Image similarity using keypoints
Principle: Visualy similar image ⇒ Many similar regions

◦ Find informative regions
◦ Describe informative regions (map to a vector space)
◦ Count number of matching regions (e.g., 1-NN + distance threshold)
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Geometric consistency

Keypoint matching: reconstruction methods ⇒ Preserving geometry

Use consensus algorithm to remove outliers (e.g., ransac)
Generic image similarity

◦ Different views → different scenes
◦ Local geometric consistency (e.g., inside an object)
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Keypoint matching limitations

Keypoints matching does not correspond to an inner product
◦ Not symmetric

Limited use for machine learning
◦ No intrinsic representation
◦ No classifier, regressor, etc

Limited use for downstream tasks (detection, recognition)

Caveat: Recent deep neural networks approaches to learn
correspondances. E.g., S2DNet: Learning Accurate Correspondences for
Sparse-to-Dense Feature Matching. Hugo Germain, Guillaume Bourmaud, and Vincent
Lepetit. In Proceedings of the European Conference on Computer Vision (ECCV), 2020.
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Kernel on bags

Image := unordered set of descriptors Bi = {xr i }
⇒ Similarity on unordered sets (bags)

Define similarity between descriptors (minor kernel):
- ex: dot product k(xr i , xs j ) = 〈xr i , xs j 〉
- ex: Gaussian kernel : k(xr i , xs j ) = exp(−γ‖xr i −xs j‖2)

- Implicit mapping: k(xr i , xs j ) = 〈φ(xr i ),φ(xs j )〉
Kernel on Bags: kernel combination

- Sum Kernel (Shawe-Taylor 2004)

K (Bi ,B j ) = ∑
xr i∈Bi

∑
xs j∈B j

k(xr i , xs j )

K (Bi ,B j ) =
〈 ∑

xr i∈Bi

φ(xr i ),
∑

xs j∈B j

φ(xs j )

〉
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Quantization kernel
Dictionary (codebook) of prototypical descriptors D = {µc }1≤c≤M

- k-means clustering over many descriptors
- Centroïds µc := codewords

Quantization function h:

◦ hm(xr i ) =
{

1 if m = argminc ‖xr i −µc‖2,

0 else
◦ 1-hot assignment to clusters (∈RM )

Bag of Visual Words:

K (Bi ,B j ) = ∑
xr i∈Bi

∑
xs j∈B j

∑
m

hm(xr i )hm(xs j )

= 〈φq (Bi ),φq (B j )〉, φq (B) = ∑
xr ∈B

[hm(xr )]m

- Histogram of occurrences of codewords (Sivic 03, Csurka 04)
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Need for kernel linearization

Kernel on bags: ML compatible alternative to descriptor matching
◦ Implicit definition of an image representation space
◦ Choice of minor kernel ⇒ combination (sum, product)

Gaussian-Quantization product kernel:

k(xr i , xs j ) = kq (xr i , xs j )kg (xr i , xs j )

K (Bi ,B j ) = ∑
xr i∈Bi

∑
xs j∈B j

kq (xr i , xs j )kg (xr i , xs j )

Computational cost:
◦ Quadratic in number of descriptors
◦ Non-linear (costly) inner loop

We have to linearize → Explicit image representation space
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Vector of Locally Aggregated Tensors

1

Gaussian-quantization kernel linearization:
◦ Assume ‖xr i‖ = 1, then kg (xr i , xs j ) ∝ exp(γ〈xr i , xs j 〉)

Taylor expansion (using Kronecker product ⊗):
◦ exp(γ〈xr i , xs j 〉) =∑

p
γp 〈xr i ,xs j 〉p

p ! =∑
p
γp

p ! 〈x⊗p
r i , x⊗p

s j 〉
◦ Approximate explicit mapping: φg (xr i ) = [xr i , xr i ⊗xr i , . . . , x⊗p

r i ]

Minor kernel:
◦ φ(xr i ) = h(xr i )⊗φg (xr i )

◦ k(xr i , xs j ) = 〈h(xr i )⊗φg (xr i ),h(xs j )⊗φg (xs j )〉
Matching kernel:

◦ Φ(Bi ) =∑
xr i∈Bi

h(xr i )⊗φg (xr i )

◦ K (Bi ,B j ) = 〈Φ(Bi ),Φ(B j )〉
Explicit image representation → Keypoint matching similarity

1

Picard, David, and Philippe-Henri Gosselin. "Improving image similarity with vectors of locally aggregated tensors." 2011
18th IEEE International Conference on Image Processing. IEEE, 2011.
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Geometric consistency kernel
Embedding local geometric consistency in a kernel

⇒Similar descriptors should have similar neighborhood

Nested matching kernels:
◦ Ω(xr i ): Neighborhood of xr i

◦ k(xr i , xs j ) = ks(xr i , xs j )
∑

u∈Ω(xr i )
∑

v∈Ω(xs j ) ks(xu , xv )

Ω defines the geometric properties (invariances)
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Spatial tensor aggregation

2

Geometric consistency kernel linearization
◦ ks(xr i , xs j ) = 〈φs(xr i ),φs(xs j )〉
◦ ks(xr i , xs j )ks(xu , xv ) = 〈φs(xr i )⊗φs(xu),φs(xs j )⊗φ(xv )〉

Sum kernel:
◦ Linearization → Global mapping
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )φs(xr i )⊗φs(xu)

With Quantized-Gaussian kernel approx:
◦ ks(xr i , xs j ) = 〈h(xr i )⊗xr i ,h(xs j ⊗xs j 〉
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )h(xr i )⊗xr i⊗h(xu)⊗xu

4th order tensor → Locally geometric consistent matching kernel

2

Picard, David. "Preserving local spatial information in image similarity using tensor aggregation of local features." 2016
IEEE International Conference on Image Processing (ICIP). IEEE, 2016.

13



Spatial tensor aggregation

2

Geometric consistency kernel linearization
◦ ks(xr i , xs j ) = 〈φs(xr i ),φs(xs j )〉
◦ ks(xr i , xs j )ks(xu , xv ) = 〈φs(xr i )⊗φs(xu),φs(xs j )⊗φ(xv )〉

Sum kernel:
◦ Linearization → Global mapping
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )φs(xr i )⊗φs(xu)

With Quantized-Gaussian kernel approx:
◦ ks(xr i , xs j ) = 〈h(xr i )⊗xr i ,h(xs j ⊗xs j 〉
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )h(xr i )⊗xr i⊗h(xu)⊗xu

4th order tensor → Locally geometric consistent matching kernel

2

Picard, David. "Preserving local spatial information in image similarity using tensor aggregation of local features." 2016
IEEE International Conference on Image Processing (ICIP). IEEE, 2016.

13



Spatial tensor aggregation

2

Geometric consistency kernel linearization
◦ ks(xr i , xs j ) = 〈φs(xr i ),φs(xs j )〉
◦ ks(xr i , xs j )ks(xu , xv ) = 〈φs(xr i )⊗φs(xu),φs(xs j )⊗φ(xv )〉

Sum kernel:
◦ Linearization → Global mapping
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )φs(xr i )⊗φs(xu)

With Quantized-Gaussian kernel approx:
◦ ks(xr i , xs j ) = 〈h(xr i )⊗xr i ,h(xs j ⊗xs j 〉
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )h(xr i )⊗xr i⊗h(xu)⊗xu

4th order tensor → Locally geometric consistent matching kernel

2

Picard, David. "Preserving local spatial information in image similarity using tensor aggregation of local features." 2016
IEEE International Conference on Image Processing (ICIP). IEEE, 2016.

13



Spatial tensor aggregation 2

Geometric consistency kernel linearization
◦ ks(xr i , xs j ) = 〈φs(xr i ),φs(xs j )〉
◦ ks(xr i , xs j )ks(xu , xv ) = 〈φs(xr i )⊗φs(xu),φs(xs j )⊗φ(xv )〉

Sum kernel:
◦ Linearization → Global mapping
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )φs(xr i )⊗φs(xu)

With Quantized-Gaussian kernel approx:
◦ ks(xr i , xs j ) = 〈h(xr i )⊗xr i ,h(xs j ⊗xs j 〉
◦ Φ(Bi ) =∑

xr i∈Bi

∑
xu∈Ω(xr i )h(xr i )⊗xr i⊗h(xu)⊗xu

4th order tensor → Locally geometric consistent matching kernel

2Picard, David. "Preserving local spatial information in image similarity using tensor aggregation of local features." 2016
IEEE International Conference on Image Processing (ICIP). IEEE, 2016.

13



Deep Learning
Features from deep neural network

224×224×3 224×224×64

112×112×128

56×56×256

28×28×512
14×14×512

◦ Local feature extractor (CNN)
◦ Mapping to a vector space (e.g., linearized matching kernel)
◦ End-to-end metric learning (minE[max(0,〈xq , xn〉+α−〈xq , xp〉)])

14
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End-to-end training?

Adapting dictionary based matching kernels to deep learning

◦ Learning discriminative dictionary (backprop on D)
◦ One hot encoding → differentiable assignement (softmax)

hm(x) = exp(γ〈x,µm〉)∑
k exp(γ〈x,µk〉)

◦ Dictionary second order layer

y = h(x)⊗x ⊗h(x)⊗x

◦ Equivalent composite layer
High dimensional output → factorization

15
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Efficient Codebook and Factorization

3

Compression by projection
• zi (x) = 〈pi ,h(x)⊗x ⊗h(x)⊗x〉, pi ∈RM×d×M×d

• z(x) = [zi (x)]1≤i≤D

Compression by rank-1 factorization
• 〈pi ,h(x)⊗x ⊗h(x)⊗x〉 = 〈Ui ,h(x)⊗x〉〈Vi ,h(x)⊗x〉
• zi (x) = (h(x)>Ui x)◦ (h(x)>Vi x)

• Ui ,Vi := Mapping of x to the assignment space
Compression by sharing

• Common pool of projectors Ũ ,Ṽ

• Combination of projectors Ui = AiŨ ,Vi = Bi Ṽ

• zi (x) = (h(x)>AiŨ x)◦ (h(x)>Bi Ṽ x)

Efficient codebook/2nd order repr. → standard deep learning operators

3

Jacob, Pierre, et al. "Efficient codebook and factorization for second order representation learning." 2019 IEEE
International Conference on Image Processing (ICIP). IEEE, 2019.
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• Combination of projectors Ui = AiŨ ,Vi = Bi Ṽ
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Outline

Keypoints
matching

Matching Kernels
(≈ 〈φ(Bi ),φ(B j )〉)

HORDE

MMD

WassersteinEMD
min

∑
wi j d(xi , x j )

wi j ≥ 0,
∑
i

wi j = 1,
∑
j

wi j = 1

sup
T
Ep [T (x)]−Eq [T (x)]

Ex∼I [x⊗k ]
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Optimizing the mean

Sum Kernel → Spatial averaging of all features

224×224×3 224×224×64

112×112×128

56×56×256

28×28×512
14×14×512

1×1×512

LDML

convolution+ReLU
max pooling
global average pooling
fully connected+`2

◦ Learning similar/dissimilar averages
◦ Ignoring the distribution of local features

Similar image → Similar local features???
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Scattering problem
• local features, ? image representations

◦ Good representations, Non-discriminative local features

◦ Representations not robust to sampling issues

Distribution metric learning
Similar/dissimilar images have similar/dissimilar deep feature distributions
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Tackling deep feature distributions

DML optimizes the mean (GAP):

min
φ

∑
I ,J∈P

‖Ei∼I [φ(xi )]−E j∼J [φ(x j )]‖2

+ ∑
I ,J∈N

max(0,α−‖Ei∼I [φ(xi )]−E j∼J [φ(x j )]‖2)

⇒ Highly different deep feature distributions with the same mean!

Distribution metric learning
We should perform metric learning such that:

◦ Similar images have similar deep feature distributions
◦ Dissimilar images have dissimilar deep feature distributions
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Distributions of local features

Point set optimal assignment: EMD

min
w

∑
r s

wr sd(xr i ,xs j )

s.t.∀r,∀s, wr s ≥ 0

∀r,
∑

s
wr s = 1;∀s,

∑
r

wr s = 1

Random local features sampled from image distribution xr i ∼Di

◦ Distance between Di and D j

◦ Wasserstein distance: minimum change to Di to obtain local features
that look as if sampled from D j

infE[d(xr i ,xs j )]
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Unknown moving deep feature distribution
Deep features distribution:

◦ Unknown (no model, few assumptions)
◦ Changing (opimized through gradient descent)

Metric learning over distributions:
◦ Distance between distributions (Wasserstein, MMD)
◦ Kernel mean embedding ↔ Maximum mean Discrepancy

sup
‖ f ‖≤1

∫
f (x)dP(x)−

∫
f (y)dQ(y)︸ ︷︷ ︸

M MD

= ‖µP−µQ‖H︸ ︷︷ ︸
Kernel mean embedding

Kernel Mean Embedding:
◦ µP = EP[φ(x)], Gaussian kernel →φ(x) ≈ [x, x ⊗x, . . . , x⊗p ]

◦ Approximate P by its high order moments
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High Order Moments estimation
Recall:

〈x⊗·· ·⊗x︸ ︷︷ ︸
K times

,y⊗·· ·⊗y〉 = 〈x,y〉K

iid random MacLaurin projections wk such that E[wk w>
k ] = I :

E[〈x,w1〉 . . .〈x,wK 〉〈y,w1〉 . . .〈y,wK 〉] = E[〈x,w1〉〈y,w1〉] . . .E[〈x,wK 〉〈y,wK 〉]
= x>E[w1w>

1 ]x . . .y>E[wK w>
K ]y

= 〈x,y〉 . . .〈x,y〉 = 〈x,y〉K

Define explicit mapping φ:

φK (x) =
K∏

k=1

〈wk ; x〉

then:
Ewk∼W [φK (x)φK (y)] = 〈x ; y〉K = 〈x⊗·· ·⊗x︸ ︷︷ ︸

K times

;y⊗·· ·⊗y〉

⇒ Untrainable projections wk
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Recursive HOM estimation4
Using trainable projections Wk :

φk (x) =φk−1(x)¯ (
W>

k x
)

Average several projections:

〈x ; y〉K = E[
∏〈x,wk〉〈y,wk〉] ≈

1

d
〈φK (x) ; φK (y)〉

Cascade architecture
◦ Fewer weights prevents overfitting and computationally efficient

c

w

h

Emb

Emb

Emb

Emb

1x1 Convolution Global Average PoolingEmb Embedding

Sum Hadamard Product

4Jacob, Pierre, et al. "Metric learning with horde: High-order regularizer for deep embeddings." Proceedings of the IEEE
International Conference on Computer Vision. 2019. 24



Qualitative results

Full sampling without HORDE regularization

MNIST, test data, ? image representations, • deep features
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Qualitative results
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MNIST, test data, ? image representations, • deep features
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HO impact
R@1: Percentage nearest neighbor is correct

k 1 2 3 4 5 6
n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

R@1 55.9 57.8 58.6 56.8 58.0 56.9 57.8 58.8 57.6 56.1 57.4 57.7 56.8 56.3 53.3 57.4 57.9 57.1 55.6 54.4 50.7

MacLaurin
k 1 2 3 4 5 6
n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

R@1 55.9 57.0 53.4 57.6 54.7 50.6 57.9 55.4 52.3 47.6 58.1 55.9 53.1 48.4 43.7 58.4 55.7 52.9 47.8 43.9 40.5

Full train
k 1 2 3 4 5 6
n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

R@1 55.9 57.0 53.4 57.9 56.1 54.2 57.6 55.4 54.3 53.0 58.3 56.3 56.0 54.7 52.4 57.9 56.6 55.8 55.0 53.9 51.6

HORDE

Concatenation of all HO:

Baseline HORDE HORDE concat
R@1 55.9 58.3 59.4

CUB dataset (200 species of birds)
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Conclusion

Image similarity based on local patterns:
◦ Matching keypoints is ++ but non ML/DL compatible
◦ Matching kernels are ML compatible drop in replacement
◦ Kernel linearization makes matching kernels DL compatible
◦ Local features matching rel. to matching distributions
◦ Matching distribution with MMD eq. to Kernel Mean Embedding
◦ High order moments rel. to Matching Kernel approx and KME

High order moments: embedding local information
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Papers + Code

Contact: jacobpie@fel.cvut.cz (or david.picard@enpc.fr)

HORDE (2019):
Github: https://github.com/pierre-jacob/ICCV2019-Horde
Paper: https://openaccess.thecvf.com/content_ICCV_2019/html/
Jacob_Metric_Learning_With_HORDE_High-Order_Regularizer_
for_Deep_Embeddings_ICCV_2019_paper.html

JCF (2018):
Paper: https://arxiv.org/abs/1906.01972

STA (2016):
Paper: https://hal.archives-ouvertes.fr/hal-01359109

VLAT (2011):
Paper: https://hal.archives-ouvertes.fr/hal-00591993/
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