Random Matrix Advances in Machine Learning

Romain COUILLET

CentraleSupélec, L2S, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-Iab, University Grenoble–Alpes, France.

September 27, 2019

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Outline

Basics of Random Matrix Theory

Motivation: Large Sample Covariance Matrices Spiked Models

Outline

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$:

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

 $(Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n}).$

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

 $(Y_p = [y_1, \dots, y_n] \in \mathbb{C}^{p \times n}).$ If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

 $(Y_p = [y_1, \dots, y_n] \in \mathbb{C}^{p \times n}).$ If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y_p = [y₁,..., y_n] ∈ C^{p×n}).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

 $\blacktriangleright \text{ No longer valid if } p,n \to \infty \text{ with } p/n \to c \in (0,\infty),$

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

For practical p, n with $p \simeq n$, leads to dramatically wrong conclusions

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

 $(Y_p = [y_1, \dots, y_n] \in \mathbb{C}^{p \times n}).$ If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

 $\blacktriangleright \ \, \text{No longer valid if } p,n \to \infty \text{ with } p/n \to c \in (0,\infty),$

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

For practical p, n with p ≃ n, leads to dramatically wrong conclusions
 Even for p = n/100.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p imes p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p imes p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{C}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^*$ satisfies

$$\mu_p \xrightarrow{\text{a.s.}} \mu_c$$

weakly, where

•
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p imes p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{C}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^*$ satisfies

$$\mu_p \xrightarrow{\mathrm{a.s.}} \mu_c$$

weakly, where

•
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$

• on $(0,\infty)$, μ_c has continuous density f_c supported on $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}.$$

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Outline

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Small rank perturbation: $C_p = I_p + P$, P of low rank.

Small rank perturbation: $C_p = I_p + P$, P of low rank.

Small rank perturbation: $C_p = I_p + P$, P of low rank.

Small rank perturbation: $C_p = I_p + P$, P of low rank.

Theorem (Eigenvalues [Baik,Silverstein'06]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$. $C_p = I_p + P$, $P = U\Omega U^*$, where, for K fixed,

 $\Omega = \operatorname{diag} \left(\omega_1, \ldots, \omega_K \right) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$

Theorem (Eigenvalues [Baik,Silverstein'06]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$. $C_p = I_p + P$, $P = U\Omega U^*$, where, for K fixed, $\Omega = \text{diag}(\omega_1, \dots, \omega_K) \in \mathbb{R}^{K \times K}$, with $\omega_1 \ge \dots \ge \omega_K > 0$.

 $\textit{Then, as } p,n \to \infty, \ p/n \to c \in (0,\infty), \textit{ denoting } \lambda_m = \lambda_m (\tfrac{1}{n} Y_p Y_p^*) \ (\lambda_m > \lambda_{m+1}),$

$$\lambda_m \xrightarrow{\text{a.s.}} \begin{cases} 1 + \omega_m + c \frac{1 + \omega_m}{\omega_m} > (1 + \sqrt{c})^2 &, \ \omega_m > \sqrt{c} \\ (1 + \sqrt{c})^2 &, \ \omega_m \in (0, \sqrt{c}]. \end{cases}$$

Theorem (Eigenvectors [Paul'07]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

▶ X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.

•
$$C_p = I_p + P$$
, $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$, $\omega_1 > \ldots > \omega_M > 0$.

Theorem (Eigenvectors [Paul'07]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with $\searrow X_p$ with *i.i.d.* zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$. $\searrow C_p = I_p + P$, $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$, $\omega_1 > \ldots > \omega_M > 0$.

Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, for $a, b \in \mathbb{C}^p$ deterministic and \hat{u}_i eigenvector of $\lambda_i(\frac{1}{n}Y_pY_p^*)$,

$$a^*\hat{u}_i\hat{u}_i^*b - \frac{1 - c\omega_i^{-2}}{1 + c\omega_i^{-1}}a^*u_iu_i^*b \cdot \mathbf{1}_{\omega_i > \sqrt{c}} \xrightarrow{\text{a.s.}} 0$$

In particular,

$$|\hat{u}_i^* u_i|^2 \xrightarrow{\text{a.s.}} \frac{1 - c\omega_i^{-2}}{1 + c\omega_i^{-1}} \cdot 1_{\omega_i > \sqrt{c}}.$$

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Similar results for multiple matrix models:

▶
$$Y_p = \frac{1}{n}(I+P)^{\frac{1}{2}}X_pX_p^*(I+P)^{\frac{1}{2}}$$

▶ $Y_p = \frac{1}{n}X_pX_p^* + P$
▶ $Y_p = \frac{1}{n}X_p^*(I+P)X$
▶ $Y_p = \frac{1}{n}(X_p+P)^*(X_p+P)$
▶ etc.
Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Application to Machine Learning

Machine Learning is not "Simple Linear Statistics":

Machine Learning is not "Simple Linear Statistics":

data are data... and are not easily modeled

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze
- recent trends go towards highly complex computer-science oriented methods: deep neural nets.

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze
- recent trends go towards highly complex computer-science oriented methods: deep neural nets.

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze
- recent trends go towards highly complex computer-science oriented methods: deep neural nets.

What can we say about those?:

Much more than we think, and actually much more than has been said so far!

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze
- recent trends go towards highly complex computer-science oriented methods: deep neural nets.

- Much more than we think, and actually much more than has been said so far!
- Key observation 1: In "non-trivial" (not so) large dimensional settings, machine learning intuitions break down!

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze
- recent trends go towards highly complex computer-science oriented methods: deep neural nets.

- Much more than we think, and actually much more than has been said so far!
- Key observation 1: In "non-trivial" (not so) large dimensional settings, machine learning intuitions break down!
- Key observation 2: In these "non-trivial" settings, RMT explains a lot of things and can improve algorithms!

Machine Learning is not "Simple Linear Statistics":

- data are data... and are not easily modeled
- machine learning algorithms involve non-linear functions, difficult to analyze
- recent trends go towards highly complex computer-science oriented methods: deep neural nets.

- Much more than we think, and actually much more than has been said so far!
- Key observation 1: In "non-trivial" (not so) large dimensional settings, machine learning intuitions break down!
- Key observation 2: In these "non-trivial" settings, RMT explains a lot of things and can improve algorithms!
- Key observation 3: Universality goes a long way...: RMT findings are compliant with real data observations!

Takeaway Message 1

"RMT Explains Why Machine Learning Intuitions Collapse in Large Dimensions"

Clustering setting in (not so) large n, p:

Clustering setting in (not so) large n, p:

▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$$

(non-trivial because otherwise too easy or too hard)

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$$

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$$

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$
- Non-trivial task:

 $\|\mu_a - \mu_b\| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \quad \kappa(x_i, x_j) = f\left(\frac{1}{p} \|x_i - x_j\|^2\right).$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a)$, $a = 1, \ldots, k$
- Non-trivial task:

 $\|\mu_a - \mu_b\| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$

(non-trivial because otherwise too easy or too hard)

Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \quad \kappa(x_i, x_j) = f\left(\frac{1}{p} \|x_i - x_j\|^2\right).$$

Why? Finite-dimensional intuition

$$K = \begin{pmatrix} \kappa(x,x_j) & \kappa(x_i,x_j) & \kappa(x_i,x_j) \\ \gg 1 & \ll 1 & \ll 1 \\ \kappa(x_i,x_j) & \kappa(x_i,x_j) & \kappa(x_i,x_j) \\ \approx 1 & \gg 1 & \ll 1 \\ \hline \kappa(x_i,x_j) & \kappa(x_i,x_j) & \kappa(x_i,x_j) \\ \kappa(x_i,x_j) & \kappa(x_i,x_j) & \kappa(x_i,x_j) \\ \approx 1 & \ll 1 & \gg 1 \end{pmatrix} \begin{pmatrix} \mathcal{C}_1 \\ \mathcal{C}_2 \\ \mathcal{C}_3 \\ \mathcal{C}_4 \end{pmatrix}$$

In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p}||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$

In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^\mathsf{T} \in \mathbb{R}^p).$

Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_a.$$

In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^\mathsf{T} \in \mathbb{R}^p).$

Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_a.$$

• this suggests
$$K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}$$
!

In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p}||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^\mathsf{T} \in \mathbb{R}^p).$

Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_a.$$

• this suggests
$$K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}!$$

more importantly, in non-trivial settings, data are neither close, nor far!

(Major) consequences:

(Major) consequences:

Most machine learning intuitions collapse

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...
- This is where RMT kicks back in!

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...
- This is where RMT kicks back in!

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p, n \to \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...
- This is where RMT kicks back in!

Theorem (**[C-Benaych'16]** Asymptotic Kernel Behavior) Under growth rate assumptions, as $p, n \to \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with $J = [j_1, \dots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!)

(Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...
- This is where RMT kicks back in!

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p, n \to \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!) and $A \in \mathbb{R}^{k \times k}$ function of:

- $\blacktriangleright f(\tau), f'(\tau), f''(\tau)$
- $\|\mu_a \mu_b\|$, $tr(C_a C_b)$, $tr((C_a C_b)^2)$, for $a, b \in \{1, \dots, k\}$.

(Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...
- This is where RMT kicks back in!

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p, n \rightarrow \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!) and $A \in \mathbb{R}^{k \times k}$ function of:

- $\blacktriangleright f(\tau), f'(\tau), f''(\tau)$
- ▶ $\|\mu_a \mu_b\|$, tr($C_a C_b$), tr($(C_a C_b)^2$), for $a, b \in \{1, \dots, k\}$.

This is a spiked model! We can study it fully!

(Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...
- This is where RMT kicks back in!

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p, n \to \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!) and $A \in \mathbb{R}^{k \times k}$ function of:

- $\blacktriangleright f(\tau), f'(\tau), f''(\tau)$
- ▶ $\|\mu_a \mu_b\|$, tr($C_a C_b$), tr($(C_a C_b)^2$), for $a, b \in \{1, \dots, k\}$.

This is a spiked model! We can study it fully!

RMT can explain tools ML engineers use everyday.

Figure: Eigenvalues of K (red) and (equivalent Gaussian model) \hat{K} (white), MNIST data, p=784, n=192.

Figure: Eigenvalues of K (red) and (equivalent Gaussian model) \hat{K} (white), MNIST data, p=784, n=192.

Figure: Leading four eigenvectors of K for MNIST data (red) and theoretical findings (blue).

Figure: Leading four eigenvectors of K for MNIST data (red) and theoretical findings (blue).
Theoretical Findings versus MNIST

Figure: 2D representation of eigenvectors of K, for the MNIST dataset. Theoretical means and 1and 2-standard deviations in **blue**. Class 1 in **red**, Class 2 in **black**, Class 3 in green.

Theoretical Findings versus MNIST

Figure: 2D representation of eigenvectors of K, for the MNIST dataset. Theoretical means and 1and 2-standard deviations in **blue**. Class 1 in **red**, Class 2 in **black**, Class 3 in green.

Takeaway Message 2

"RMT Reassesses and Improves Data Processing"

Thanks to [C-Benaych'16]: Possibility to improve kernels:

Thanks to [C-Benaych'16]: Possibility to improve kernels:

by "focusing kernels" on best discriminative statistics: tune $f'(\tau), f''(\tau)$

Thanks to [C-Benaych'16]: Possibility to improve kernels:

- by "focusing kernels" on best discriminative statistics: tune $f'(\tau), f''(\tau)$
- by "killing" non discriminative feature directions.

Thanks to [C-Benaych'16]: Possibility to improve kernels:

- by "focusing kernels" on best discriminative statistics: tune $f'(\tau), f''(\tau)$
- by "killing" non discriminative feature directions.

Example: Covariance-based discrimation, kernel $f(t) = \exp(-\frac{1}{2}t)$ versus $f(t) = (t - \tau)^2$ (think about the surprising kernel shape!)

Thanks to [C-Benaych'16]: Possibility to improve kernels:

- by "focusing kernels" on best discriminative statistics: tune $f'(\tau), f''(\tau)$
- by "killing" non discriminative feature directions.

Example: Covariance-based discrimation, kernel $f(t) = \exp(-\frac{1}{2}t)$ versus $f(t) = (t - \tau)^2$ (think about the surprising kernel shape!)

Semi-supervised learning: a great idea that never worked!

Semi-supervised learning: a great idea that never worked!

Setting: assume now

$$\begin{array}{l} \bullet \ x_1^{(a)},\ldots,x_{n_a,[l]}^{(a)} \text{ already labelled (few),} \\ \bullet \ x_{n_a,[l]+1}^{(a)},\ldots,x_{n_a}^{(a)} \text{ unlabelled (a lot).} \end{array}$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
 - $\begin{array}{l} \blacktriangleright \ x_1^{(a)},\ldots,x_{n_a,[l]}^{(a)} \text{ already labelled (few),} \\ \\ \blacktriangleright \ x_{n_a,[l]+1}^{(a)},\ldots,x_{n_a}^{(a)} \text{ unlabelled (a lot).} \end{array}$

• Machine Learning original idea: find "scores" F_{ia} for x_i to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} K_{ij} \left(F_{ia} - F_{jb} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{x_{i} \in \mathcal{C}_{a}\}}.$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
 - $\begin{array}{l} \blacktriangleright \ x_1^{(a)},\ldots,x_{n_a,[l]}^{(a)} \text{ already labelled (few),} \\ \\ \blacktriangleright \ x_{n_a,[l]+1}^{(a)},\ldots,x_{n_a}^{(a)} \text{ unlabelled (a lot).} \end{array}$

• Machine Learning original idea: find "scores" F_{ia} for x_i to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} K_{ij} \left(F_{ia} - F_{jb} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{x_{i} \in \mathcal{C}_{a}\}}.$$

Explicit solution:

$$F^{[u]} = \left(I_{n_{[u]}} - D_{[u]}^{-1} K_{[uu]}\right)^{-1} D_{[u]}^{-1} K_{[ul]} F^{[l]}$$

where $D = \text{diag}(K1_n)$ (degree matrix) and [ul], [uu], ... blocks of labeled/unlabeled data.

The finite-dimensional intuition: What we expect

The finite-dimensional intuition: What we expect

The finite-dimensional intuition: What we expect

The reality: What we see!

Setting. p = 400, n = 1000, $x_i \sim \mathcal{N}(\pm \mu, I_p)$. Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$. Display. Scores F_{ik} (left) and $F_{ik}^{\circ} = F_{ik} - \frac{1}{2}(F_{i1} + F_{i2})$ (right).

The reality: What we see!

Setting. p = 400, n = 1000, $x_i \sim \mathcal{N}(\pm \mu, I_p)$. Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$. Display. Scores F_{ik} (left) and $F_{ik}^{\circ} = F_{ik} - \frac{1}{2}(F_{i1} + F_{i2})$ (right).

Score are almost all identical... and do not follow the labelled data!

MNIST Data Example

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

MNIST Data Example

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

MNIST Data Example

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), $n=192, \ p=784, \ n_l/n=1/16,$ Gaussian kernel.

Consequences of the finite-dimensional "mismatch"

A priori, the algorithm should not work

- A priori, the algorithm should not work
- Indeed "in general" it does not!

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

Asymptotic performance analysis: clear understanding of what we see!

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

- Asymptotic performance analysis: clear understanding of what we see!
- Update the algorithm and provably improve unlabelled data use.

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,\cdot} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$.

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,\cdot} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$.

Most importantly: m_b, Σ_b independent of n_u (number of unlabelled data).

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,\cdot} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$.

Most importantly: m_b, Σ_b independent of n_u (number of unlabelled data).

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,\cdot} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$.

Most importantly: m_b, Σ_b independent of n_u (number of unlabelled data).

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Performances:

Experimental evidence: MNIST

O	١	ĺ	2				
Digits	(0,8)	(2,7)	(6,9)				
	$n_u = 100$						
Centered kernel (RMT)	89.5±3.6	89.5±3.4	85.3±5.9				
Iterated centered kernel (RMT)	89.5±3.6	89.5±3.4	85.3±5.9				
Laplacian	$75.5 {\pm} 5.6$	74.2 ± 5.8	$70.0 {\pm} 5.5$				
Iterated Laplacian	87.2±4.7	86.0 ± 5.2	$81.4{\pm}6.8$				
Manifold	88.0±4.7	88.4±3.9	$82.8{\pm}6.5$				
n_u	$n_u = 1000$						
Centered kernel (RMT)	92.2±0.9	92.5±0.8	92.6±1.6				
Iterated centered kernel (RMT)	92.3±0.9	92.5 ± 0.8	92.9±1.4				
Laplacian	$65.6 {\pm} 4.1$	74.4 ± 4.0	69.5±3.7				
Iterated Laplacian	92.2±0.9	92.4±0.9	92.0±1.6				
Manifold	$91.1 {\pm} 1.7$	$91.4 {\pm} 1.9$	$91.4{\pm}2.0$				

Table: Comparison of classification accuracy (%) on MNIST datasets with $n_l = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.

Experimental evidence: Traffic signs (HOG features)

S	0	5		30
E	3		30	
70	Ø		0	C

Class ID	(2,7)	(9,10)	(11,18)			
$n_u = 100$						
Centered kernel (RMT)	79.0±10.4	77.5±9.2	78.5±7.1			
Iterated centered kernel (RMT)	85.3±5.9	89.2±5.6	90.1±6.7			
Laplacian	73.8±9.8	77.3±9.5	78.6±7.2			
Iterated Laplacian	83.7±7.2	88.0±6.8	87.1±8.8			
Manifold	77.6±8.9	$81.4{\pm}10.4$	$82.3{\pm}10.8$			
$n_u = 1000$						
Centered kernel (RMT)	83.6±2.4	84.6±2.4	88.7±9.4			
Iterated centered kernel (RMT)	84.8±3.8	$88.0{\pm}5.5$	96.4±3.0			
Laplacian	72.7±4.2	88.9±5.7	95.8±3.2			
Iterated Laplacian	$83.0 {\pm} 5.5$	88.2±6.0	$92.7{\pm}6.1$			
Manifold	77.7±5.8	$85.0{\pm}9.0$	$90.6{\pm}8.1$			

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with $n_l = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.

Takeaway Message 3

"RMT Also Grasps 'Real Data' Processing"
Current Problem. Data models based on vectors of i.i.d. entries (or even only Gaussian).

Current Problem. Data models based on vectors of i.i.d. entries (or even only Gaussian).

Good news. In RMT, exploitation of time **and** feature dimensions brings **universality**!, i.e., only first moments matter irrespective of distribution.

Current Problem. Data models based on vectors of i.i.d. entries (or even only Gaussian).

Good news. In RMT, exploitation of time **and** feature dimensions brings **universality**!, i.e., only first moments matter irrespective of distribution.

The Solution?. Concentrated random vectors go a long way beyond!

Current Problem. Data models based on vectors of i.i.d. entries (or even only Gaussian).

Good news. In RMT, exploitation of time **and** feature dimensions brings **universality!**, i.e., only first moments matter irrespective of distribution.

The Solution?. Concentrated random vectors go a long way beyond!

Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$ is a concentrated random vector if, for all Lipschitz $f:\mathbb{R}^p\to\mathbb{R},$ there exists $m_f\in\mathbb{R},$ wuch that

 $P\left(|f(x)-m_f|>\varepsilon\right)\leq e^{-g\left(\varepsilon\right)},\quad g \text{ increasing function}.$

Current Problem. Data models based on vectors of i.i.d. entries (or even only Gaussian).

Good news. In RMT, exploitation of time **and** feature dimensions brings **universality!**, i.e., only first moments matter irrespective of distribution.

The Solution?. Concentrated random vectors go a long way beyond!

Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$ is a concentrated random vector if, for all Lipschitz $f:\mathbb{R}^p\to\mathbb{R},$ there exists $m_f\in\mathbb{R},$ wuch that

 $P\left(|f(x)-m_f|>\varepsilon\right)\leq e^{-g(\varepsilon)},\quad g \text{ increasing function}.$

Theorem ([Louart,C'18] [Seddik,C'19] Kernel Universality) For $x_i \sim \mathcal{L}(\mu_a, C_a)$ concentrated random vector, under the conditions of [C-Benaych'16],

$$||K - \hat{K}|| \xrightarrow{\text{a.s.}} 0, \quad K\hat{K} \simeq \frac{1}{p}ZZ^{\mathsf{T}} + JAJ^{\mathsf{T}} + *$$

with A only dependent on $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$.

Current Problem. Data models based on vectors of i.i.d. entries (or even only Gaussian).

Good news. In RMT, exploitation of time **and** feature dimensions brings **universality!**, i.e., only first moments matter irrespective of distribution.

The Solution?. Concentrated random vectors go a long way beyond!

Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$ is a concentrated random vector if, for all Lipschitz $f:\mathbb{R}^p\to\mathbb{R},$ there exists $m_f\in\mathbb{R},$ wuch that

 $P\left(|f(x) - m_f| > \varepsilon\right) \le e^{-g(\varepsilon)}, \quad g \text{ increasing function.}$

Theorem ([Louart,C'18] [Seddik,C'19] Kernel Universality) For $x_i \sim \mathcal{L}(\mu_a, C_a)$ concentrated random vector, under the conditions of [C-Benaych'16],

$$||K - \hat{K}|| \xrightarrow{\text{a.s.}} 0, \quad K\hat{K} \simeq \frac{1}{p}ZZ^{\mathsf{T}} + JAJ^{\mathsf{T}} + *$$

with A only dependent on $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$.

Same result as [C-Benaych'16]... Universality of first two moments!

Ok...so what?

Key Finding. Real images are "almost" concentrated random vectors!

Key Finding. Real images are "almost" concentrated random vectors!

Example: GAN-generated images are concentrated random vectors!

Key Finding. Real images are "almost" concentrated random vectors!

Example: GAN-generated images are concentrated random vectors!

Ok...so what? (2)

Results. [Seddik,C'19]

Ok...so what? (2)

Results. [Seddik,C'19]

Reminder of Takeaway messages:

Reminder of Takeaway messages:

The road ahead:

 getting away from GMM models and show universality results (concentration of measure arguments)

Reminder of Takeaway messages:

The road ahead:

- getting away from GMM models and show universality results (concentration of measure arguments)
- generalize the approach to problems having non-explicit solutions (such as convex optim problems)

Reminder of Takeaway messages:

The road ahead:

- getting away from GMM models and show universality results (concentration of measure arguments)
- generalize the approach to problems having non-explicit solutions (such as convex optim problems)
- deep learning, recurrent neural nets... are a very different story!

The End

Thank you!

C-Benaych'16] R. Couillet, Benaych-Georges, "Kernel Spectral Clustering of Large Dimensional Data", Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016. [article]

[Mai,C'18] X. Mai, R. Couillet, "A random matrix analysis and improvement of semi-supervised learning for large dimensional data", (in Press) Journal of Machine Learning Research, 2017. [article]

🔪 [Louart,C'18] C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", The Annals of Applied Probability, vol. 28, no. 2, pp. 1190-1248, 2018. [article]

🦫 [Seddik,C'19] M. Seddik, M. Tamaazousti, R. Couillet, "Kernel Random Matrices of Large Concentrated Data: The Example of GAN-Generated Image", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'19), Brighton, UK, 2019. [article]

😪 H. Tiomoko Ali, R. Couillet, "Improved spectral community detection in large heterogeneous networks", Journal of Machine Learning Research, vol. 18, no. 225, pp. 1-49, 2018. [article]

R. Couillet, M. Tiomoko, S. Zozor, E. Moisan, "Random matrix-improved estimation of covariance matrix distances", (submitted to) Journal of Multivariate Analysis, 2018. [preprint]

Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", IEEE Transactions on Signal Processing, vol. 67, no.4, pp. 1065-1074, 2018. [article]