On the use of non-stationary policies for stationary optimal control problem

(An introduction to Reinforcement Learning / Optimal control)

Bruno Scherrer

INRIA (Institut National de Recherche en Informatique et ses Applications)
IECL (Institut Elie Cartan de Lorraine)

$$M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (1 + 0.5a)\mathbb{1}_{a>0}, w_t \sim 1$$

- t = 0, 1, ..., 11, H = 12
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, \dots, M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t))$ and R(x) = g(x).

$$M = 20$$
, $f(x) = x$, $g(x) = 0.25x$, $h(x) = 0.25x$, $C(a) = (1 + 0.5a)\mathbb{1}_{a>0}$, $w_t \sim 1$

- $t = 0, 1, \dots, 11, H = 12$
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, ..., M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t))$ and R(x) = g(x).

$$M = 20$$
, $f(x) = x$, $g(x) = 0.25x$, $h(x) = 0.25x$, $C(a) = (1 + 0.5a)\mathbb{1}_{a>0}$, $w_t \sim 1$

- $t = 0, 1, \dots, 11, H = 12$
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, ..., M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t))$ and R(x) = g(x).

$$M = 20$$
, $f(x) = x$, $g(x) = 0.25x$, $h(x) = 0.25x$, $C(a) = (1 + 0.5a)\mathbb{1}_{a>0}$, $w_t \sim 1$

- t = 0, 1, ..., 11, H = 12
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, \dots, M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t))$ and R(x) = g(x).

$$M = 20$$
, $f(x) = x$, $g(x) = 0.25x$, $h(x) = 0.25x$, $C(a) = (1 + 0.5a)1_{a>0}$, $w_t \sim 10^{-10}$

- $t = 0, 1, \dots, 11, H = 12$
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, ..., M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t))$ and R(x) = g(x).

$$M = 20$$
, $f(x) = x$, $g(x) = 0.25x$, $h(x) = 0.25x$, $C(a) = (1 + 0.5a)\mathbb{1}_{a>0}$, $w_t \sim 1$

- t = 0, 1, ..., 11, H = 12
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, ..., M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t))$ and R(x) = g(x).

2 stationary policies and 1 non-stationary policy:

$$\pi^{(2)}(x) = \max\{(M-x)/2-x; 0\}$$

$$\pi^{(1)}(x) = \begin{cases} M-x & \text{if } x < M/4 \\ 0 & \text{otherwise} \end{cases} \qquad \pi^{(3)}_t(x) = \begin{cases} M-x & \text{if } t < 6 \\ \lfloor (M-x)/5 \rfloor & \text{otherwise} \end{cases}$$

$$v_{\pi,s}(x) = \mathbb{E}_{\pi} \left[\sum_{t=s}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E}_{\pi} [r_{s}(x_{s}, a_{s}, w_{s}) \mid x_{s} = x] + \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})]$$

$$+ \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x, x_{s+1} = y \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})] + \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) v_{\pi, s+1}(y).$$

$$v_{\pi,s}(x) = \mathbb{E}_{\pi} \left[\sum_{t=s}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E}_{\pi} [r_{s}(x_{s}, a_{s}, w_{s}) \mid x_{s} = x] + \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})]$$

$$+ \sum_{y} \mathbb{P}(x_{s+1} = y \mid x_{s} = x, a_{s} = \pi(x_{s})) \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x, x_{s+1} = y \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})] + \sum_{y} \mathbb{P}(x_{s+1} = y \mid x_{s} = x, a_{s} = \pi(x_{s})) v_{\pi, s+1}(y).$$

$$v_{\pi,s}(x) = \mathbb{E}_{\pi} \left[\sum_{t=s}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E}_{\pi} [r_{s}(x_{s}, a_{s}, w_{s}) \mid x_{s} = x] + \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})]$$

$$+ \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x, x_{s+1} = y \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})] + \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) v_{\pi, s+1}(y).$$

$$\begin{aligned} v_{\pi,s}(x) &= \mathbb{E}_{\pi} \left[\sum_{t=s}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right] \\ &= \mathbb{E}_{\pi} [r_{s}(x_{s}, a_{s}, w_{s}) \mid x_{s} = x] + \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right] \\ &= \mathbb{E} [r_{s}(x, \pi(x), w_{s})] \\ &+ \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) \, \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x, x_{s+1} = y \right] \\ &= \mathbb{E} [r_{s}(x, \pi(x), w_{s})] + \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) \, v_{\pi, s+1}(y). \end{aligned}$$

$$v_{\pi,s}(x) = \mathbb{E}_{\pi} \left[\sum_{t=s}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E}_{\pi} [r_{s}(x_{s}, a_{s}, w_{s}) \mid x_{s} = x] + \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})]$$

$$+ \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) \mathbb{E}_{\pi} \left[\sum_{t=s+1}^{H-1} r_{t}(x_{t}, a_{t}, w_{t}) + R(x_{H}) \mid x_{s} = x, x_{s+1} = y \right]$$

$$= \mathbb{E} [r_{s}(x, \pi(x), w_{s})] + \sum_{y} \mathbb{P}(x_{s+1} = y | x_{s} = x, a_{s} = \pi(x_{s})) v_{\pi, s+1}(y).$$

$$\begin{split} v_{*,s}(x) &= \max_{\pi_s, \dots} \mathbb{E}_{\pi_s, \dots} \left\{ \sum_{t=s}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_s = x \right\} \\ &= \max_{\pi_s, \pi_{s+1}, \dots} \mathbb{E}_{\pi_s, \pi_{s+1}, \dots} \left\{ r_s(x_s, a_s, w_s) \right. \\ &+ \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = \pi_s(x_s)) \left(\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \right) \mid x_s = x, \ x_{s+1} = y \right\} \\ &= \max_a \left\{ \mathbb{E}[r_s(x, a, w_s)] \right. \\ &+ \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \max_{\pi_{s+1}, \dots} \mathbb{E}_{\pi_{s+1}, \dots} \left[\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_{s+1} = y \right] \right\} \\ &= \max_a \left\{ \mathbb{E}[r_s(x, a, w_s)] + \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \ v_{*,s+1}(y) \right\}. \end{split}$$

$$\begin{split} v_{*,s}(x) &= \max_{\pi_s, \dots} \mathbb{E}_{\pi_s, \dots} \left\{ \sum_{t=s}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_s = x \right\} \\ &= \max_{\pi_s, \pi_{s+1}, \dots} \mathbb{E}_{\pi_s, \pi_{s+1}, \dots} \left\{ r_s(x_s, a_s, w_s) \right. \\ &+ \sum_{y} \mathbb{P}(x_{s+1} = y | x_s = x, a_s = \pi_s(x_s)) \left(\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \right) \mid x_s = x, \ x_{s+1} = y \right\} \\ &= \max_{s} \left\{ \mathbb{E}[r_s(x, a, w_s)] \right. \\ &+ \sum_{y} \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \max_{\pi_{s+1}, \dots} \mathbb{E}_{\pi_{s+1}, \dots} \left[\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_{s+1} = y \right] \right\} \\ &= \max_{s} \left\{ \mathbb{E}[r_s(x, a, w_s)] + \sum_{t=s+1} \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \ v_{*,s+1}(y) \right\}. \end{split}$$

$$\begin{split} v_{*,s}(x) &= \max_{\pi_s, \dots} \mathbb{E}_{\pi_s, \dots} \left\{ \sum_{t=s}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_s = x \right\} \\ &= \max_{\pi_s, \pi_{s+1}, \dots} \mathbb{E}_{\pi_s, \pi_{s+1}, \dots} \left\{ r_s(x_s, a_s, w_s) \right. \\ &+ \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = \pi_s(x_s)) \left(\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \right) \mid x_s = x, \ x_{s+1} = y \right\} \\ &= \max_a \left\{ \mathbb{E} \left[r_s(x, a, w_s) \right] \right. \\ &+ \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \max_{\pi_{s+1}, \dots} \mathbb{E}_{\pi_{s+1}, \dots} \left[\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_{s+1} = y \right] \right\} \\ &= \max_a \left\{ \mathbb{E} \left[r_s(x, a, w_s) \right] + \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \right. \\ v_{*,s+1}(y) \right\}. \end{split}$$

$$\begin{split} v_{*,s}(x) &= \max_{\pi_s, \dots} \mathbb{E}_{\pi_s, \dots} \left\{ \sum_{t=s}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_s = x \right\} \\ &= \max_{\pi_s, \pi_{s+1}, \dots} \mathbb{E}_{\pi_s, \pi_{s+1}, \dots} \left\{ r_s(x_s, a_s, w_s) \right. \\ &+ \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = \pi_s(x_s)) \left(\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \right) \mid x_s = x, \ x_{s+1} = y \right\} \\ &= \max_a \left\{ \mathbb{E}[r_s(x, a, w_s)] \right. \\ &+ \sum_y \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \max_{\pi_{s+1}, \dots} \mathbb{E}_{\pi_{s+1}, \dots} \left[\sum_{t=s+1}^{H-1} r_t(x_t, a_t, w_t) + R(x_H) \mid x_{s+1} = y \right] \right\} \\ &= \max_a \left\{ \mathbb{E}[r_s(x, a, w_s)] + \sum_t \mathbb{P}(x_{s+1} = y | x_s = x, a_s = a) \ v_{*,s+1}(y) \right\}. \end{split}$$

$$M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (1 + 0.5a)\mathbb{1}_{a>0}, w_t \sim U(\{5, 6, \dots, 15\}), \gamma = \frac{1}{1+\alpha}$$

- $t=0,1,\ldots$
- State space: $x \in X = \{0, 1, ..., M\}$
- Action space: At state x, $a \in A(x) = \{0, 1, \dots, M x\}$
- Dynamics: $x_{t+1} = \max(x_t + a_t w_t, 0)$
- Reward: $r(x_t, a_t, w_t) = -C(a_t) h(x_t + a_t) + f(\min(w_t, x_t + a_t)).$

State: level of wear (x) of an object (e.g., a car).

Action: {(R)eplace, (K)eep}.

Cost

- c(x, R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- $p(y|x,R) \sim d(y) = \beta \exp^{-\beta y} \mathbb{1}\{y \ge 0\},$
- $p(y|x, K) \sim d(y x) = \beta \exp^{-\beta(y x)} \mathbb{1}\{y \ge x\}.$

State: level of wear (x) of an object (e.g., a car). **Action**: $\{(R)\text{eplace}, (K)\text{eep}\}$.

Cost

- c(x, R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- $p(y|x,R) \sim d(y) = \beta \exp^{-\beta y} \mathbb{1}\{y \ge 0\},$
- $p(y|x, K) \sim d(y x) = \beta \exp^{-\beta(y x)} \mathbb{1}\{y \ge x\}.$

State: level of wear (x) of an object (e.g., a car).

Action: $\{(R) \text{eplace}, (K) \text{eep}\}.$

Cost:

- c(x, R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- $p(y|x,R) \sim d(y) = \beta \exp^{-\beta y} \mathbb{1}\{y \ge 0\},$
- $p(y|x, K) \sim d(y x) = \beta \exp^{-\beta(y x)} \mathbb{1}\{y \ge x\}.$

State: level of wear (x) of an object (e.g., a car). **Action**: $\{(R)\text{eplace}, (K)\text{eep}\}$.

Cost:

- c(x, R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- $p(y|x,R) \sim d(y) = \beta \exp^{-\beta y} \mathbb{1}\{y \ge 0\},$
- $p(y|x,K) \sim d(y-x) = \beta \exp^{-\beta(y-x)} \mathbb{1}\{y \ge x\}.$

State: level of wear (x) of an object (e.g., a car).

Action: $\{(R)\text{eplace}, (K)\text{eep}\}.$

Cost:

- c(x, R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- $p(y|x,R) \sim d(y) = \beta \exp^{-\beta y} \mathbb{1}\{y \ge 0\},$
- $p(y|x,K) \sim d(y-x) = \beta \exp^{-\beta(y-x)} \mathbb{1}\{y \ge x\}.$

The optimal value function satisfies

$$v_*(x) = \min \left\{ \underbrace{c(x) + \gamma \int_0^\infty d(y - x) v_*(y) dy}_{(K) \text{eep}}, \underbrace{C + \gamma \int_0^\infty d(y) v_*(y) dy}_{(R) \text{eplace}} \right\}$$

Optimal policy: action that attains the minimum

Linear approximation space

$$\mathcal{F} := \left\{ v_n(x) = \sum_{k=0}^{19} \alpha_k \cos(k\pi \frac{x}{x_{\text{max}}}) \right\}.$$

Collect N samples on a uniform grid:

Figure: Left: the *target* values computed as $\{Tv_0(x_n)\}_{1 \le n \le N}$. Right: the approximation $v_1 \in \mathcal{F}$ of the target function Tv_0 .

Linear approximation space

$$\mathcal{F} := \left\{ v_n(x) = \sum_{k=0}^{19} \alpha_k \cos(k\pi \frac{x}{x_{\text{max}}}) \right\}.$$

Collect N samples on a uniform grid:

Figure: Left: the *target* values computed as $\{Tv_0(x_n)\}_{1 \le n \le N}$. Right: the approximation $v_1 \in \mathcal{F}$ of the target function Tv_0 .

One more step:

Figure: Left: the *target* values computed as $\{Tv_1(x_n)\}_{1 \le n \le N}$. Right: the approximation $v_2 \in \mathcal{F}$ of Tv_1 .

Figure: The approximation $v_{20} \in \mathcal{F}$.

Error propagation for AVI

1 Bounding: $||v_* - v_k||_{\infty}$:

$$\begin{aligned} \|v_* - v_k\|_{\infty} &= \|v_* - Tv_{k-1} - \epsilon_k\|_{\infty} \\ &\leq \|Tv_* - Tv_{k-1}\|_{\infty} + \epsilon \\ &\leq \gamma \|v_* - v_{k-1}\|_{\infty} + \epsilon \\ &\leq \frac{\epsilon}{1 - \gamma}. \end{aligned}$$

2 From $||v_* - v_k||_{\infty}$ to $||v_* - v_{\pi_{k+1}}||_{\infty}$ $(\pi_{k+1} = \mathcal{G}v_k)$:

$$\begin{aligned} \|v_{*} - v_{\pi_{k+1}}\|_{\infty} &\leq \|Tv_{*} - T_{\pi_{k+1}}v_{k}\|_{\infty} + \|T_{\pi_{k+1}}v_{k} - T_{\pi_{k+1}}v_{\pi_{k+1}}\|_{\infty} \\ &\leq \|Tv_{*} - Tv_{k}\|_{\infty} + \gamma \|v_{k} - v_{\pi_{k+1}}\|_{\infty} \\ &\leq \gamma \|v_{*} - v_{k}\|_{\infty} + \gamma \left(\|v_{k} - v_{*}\|_{\infty} + \|v_{*} - v_{\pi_{k+1}}\|_{\infty}\right) \\ &\leq \frac{2\gamma}{1 - \gamma} \|v_{*} - v_{k}\|_{\infty}. \end{aligned}$$

Error propagation for AVI

1 Bounding: $||v_* - v_k||_{\infty}$:

$$\|\mathbf{v}_* - \mathbf{v}_k\|_{\infty} = \|\mathbf{v}_* - \mathbf{T}\mathbf{v}_{k-1} - \epsilon_k\|_{\infty}$$

$$\leq \|\mathbf{T}\mathbf{v}_* - \mathbf{T}\mathbf{v}_{k-1}\|_{\infty} + \epsilon$$

$$\leq \gamma \|\mathbf{v}_* - \mathbf{v}_{k-1}\|_{\infty} + \epsilon$$

$$\leq \frac{\epsilon}{1 - \gamma}.$$

2 From $||v_* - v_k||_{\infty}$ to $||v_* - v_{\pi_{k+1}}||_{\infty}$ $(\pi_{k+1} = \mathcal{G}v_k)$:

$$\begin{split} \|v_{*} - v_{\pi_{k+1}}\|_{\infty} &\leq \|Tv_{*} - T_{\pi_{k+1}}v_{k}\|_{\infty} + \|T_{\pi_{k+1}}v_{k} - T_{\pi_{k+1}}v_{\pi_{k+1}}\|_{\infty} \\ &\leq \|Tv_{*} - Tv_{k}\|_{\infty} + \gamma \|v_{k} - v_{\pi_{k+1}}\|_{\infty} \\ &\leq \gamma \|v_{*} - v_{k}\|_{\infty} + \gamma \left(\|v_{k} - v_{*}\|_{\infty} + \|v_{*} - v_{\pi_{k+1}}\|_{\infty}\right) \\ &\leq \frac{2\gamma}{1-\gamma} \|v_{*} - v_{k}\|_{\infty}. \end{split}$$

1	2	3	4	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3:
$$0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2 \frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2 \frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \xrightarrow{k \to \infty} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

1	2	3	4	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
V ₀	0	0	0	0	
V_1	$-\epsilon$	ϵ	0	0	
V_2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2\epsilon$	$-\gamma^2 \epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3:
$$0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
V_1	$-\epsilon$	ϵ	0	0	
V_2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2\epsilon$	$-\gamma^2 \epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
v_1	$-\epsilon$	ϵ	0	0	
V_2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2 \epsilon$	$-\gamma^2 \epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

$$v_{\pi_k}(k) = \sum_{k=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \xrightarrow{k \to \infty} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
v_1	$-\epsilon$	ϵ	0	0	
V_2	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2 \epsilon$	$-\gamma^2 \epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2 \frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2 \frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
v ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2 \epsilon$	$-\gamma^2 \epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2 \frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2 \frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
v_1	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
V ₃	$-\gamma^2 \epsilon$	$-\gamma^2 \epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
<i>V</i> 3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2\frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2\frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
<i>v</i> ₁	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	$-\gamma\epsilon$	$-\epsilon - \gamma \epsilon$	$\epsilon + \gamma \epsilon$	0	
<i>V</i> 3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2 \frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2 \frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \xrightarrow{k \to \infty} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

	1	2	3	4	
<i>v</i> ₀	0	0	0	0	
v_1	$-\epsilon$	ϵ	0	0	
<i>V</i> ₂	,	,	$\epsilon + \gamma \epsilon$	0	
<i>V</i> 3	$-\gamma^2\epsilon$	$-\gamma^2\epsilon$	$-\epsilon - \gamma \epsilon - \gamma^2 \epsilon$	$\epsilon + \gamma \epsilon + \gamma^2 \epsilon$	

State 2:
$$0 + \gamma(-\epsilon) = -2\gamma\epsilon + \gamma\epsilon$$

State 3: $0 + \gamma(-\epsilon - \gamma\epsilon) = -2(\gamma + \gamma^2)\epsilon + \gamma(\epsilon + \gamma\epsilon)$

$$v_{\pi_k}(k) = \sum_{t=0}^{\infty} \gamma^t \left(-2 \frac{\gamma - \gamma^k}{1 - \gamma} \epsilon \right) = -2 \frac{\gamma - \gamma^k}{(1 - \gamma)^2} \epsilon \stackrel{k \to \infty}{\longrightarrow} -\frac{2\gamma}{(1 - \gamma)^2} \epsilon$$

Tightness of the bound (Lesner and Scherrer, 2014)

For any m and ℓ , NSMPI generates a sequence of policies $(\pi_k)_{k\geq 1}$ such that π_k acts optimally except in state k.

Thus, $\pi_{k,\ell} = \pi_k \pi_{k-1} \dots \pi_{k-\ell+1}$ gets stuck in the loop

$$k, k+\ell-1, k+\ell-2, k+1, k, \ldots$$

and therefore

$$v_{\pi_{k,\ell}}(k) = -rac{2\gamma - \gamma^k}{(1-\gamma)(1-\gamma^\ell)}\epsilon.$$