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Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E
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Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
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M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

e t=0,1,...,11, H=12
e State space: x € X ={0,1,..., M}
e Action space: At state x, a € A(x) ={0,1,...,M — x}

e Dynamics: xp41 = max( x; + ar — w; , 0)

Reward: r(x, ar, we) = —C(ar) — h(xe + a¢) + f(min(we, x¢ + ar))
and R(x) = g(x).
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Example: The Retail Store Management Problem

2 stationary policies and 1 non-stationary policy:
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Policy evaluation

H-1
Vr,s(x) =Ex Z re(xe, ae, we) + R(xn) | xs = x

t=s
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Example: the Retail Store Management Problem
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Policy optimization

xs—x}
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Example: the Retail Store Management Problem
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Example: the Retail Store Management Problem

Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the end of each
month the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is (q). If the
demand w is bigger than the available inventory x, customers that

cannot be served leave. Fhe-value-of-therematning-inventeryat-theend
of-the-yearisg{x). ‘The rate of inflation is v = 3% = 0.03.‘

M =20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,%¢

we ~ U({5,6, ..., 15}), v =

1
I+

t=0,1,...

State space: x € X ={0,1,..., M}

Action space: At state x, a € A(x) ={0,1,...,M — x}

e Dynamics: xp1 = max( x; + a; — wy , 0)

Reward: r(x, ar, we) = —C(a¢) — h(xe + ar) + f(min(we, x¢ + a)).
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Example: the Retail Store Management Problem
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Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
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Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:
e c(x,R)=C
e ¢(x,K) = c(x) maintenance plus extra costs.
Dynamics:
* p(ylx,R) ~ d(y) = Bexp™ L{y > 0},
o plylx, K) ~d(y —x) = Bexp P09 1{y > x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.
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Example: the Optimal Replacement Problem

The optimal value function satisfies

Vi(x) = min { c(x) —|—7/OOO d(y — x)vi(y)dy, C—l—v/ooo d(y)v*(y)dy}

(K)eep (R)eplace

Optimal policy: action that attains the minimum

o
Value function

Management cost
04

wear K R, K RK
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Example: the Optimal Replacement Problem
Linear approximation space

19 X
F = {v,,(x) = Zak cos(km )} .
k=0

Xmax

Collect N samples on a uniform grid:

Figure: the target values computed as { Tvo(xn)}1<n<n-
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Example: the Optimal Replacement Problem
Linear approximation space

19 X
F = {v,,(x) = Zak cos(km )} .
k=0

Xmax

Collect N samples on a uniform grid:

Figure: Left: the target values computed as { Tvo(xn) }1<n<n. Right:
the approximation vy € F of the target function T v.
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Example: the Optimal Replacement Problem

One more step:

Figure: Left: the target values computed as { Tvi(x,)}1<n<n. Right:

the approximation v, € F of Tv;.
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Example: the Optimal Replacement Problem

Figure: The approximation v € F.
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Error propagation for AVI

@ Bounding: ||vi — Vi|loo:

v = Viclloo = [Ivse = Tvk—1 — €kl
S || TV* - TVk—lHoo +e€

< '7“‘/* - Vk—].”oo +e€

€
<

_1_’}/'
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Tightness of the bound for AVI
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Tightness of the bound for AVI

0 —2ye 207+ 27+ +7)e ~2% e
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1 2 3 4
Vo 0 0 0 0
Vi —€ € 0 0

State 2: 0+ y(—€) = —2ye + e

15/16



Tightness of the bound for AVI

0 ~2ve 20y +7%)e 2y +72+7)e ~2% e
C% o o o W 0 \W%
1 2 3 4
Vo 0 0 0 0
Vi —€ € 0 0

State 2: 0+ y(—€) = —2ye + e

15/16



Tightness of the bound for AVI

0 ~2ve 20y +7%)e 2y +72+7)e ~2% e
C% o o o W 0 \W%
1 2 3 4
) 0 0 0 0
Vi —€ € 0 0
Vo —ve | —e —ye €+ ye 0

State 2: 0+ y(—€) = —2ye + e
State 3: 0 + y(—¢c — 7€) = —2(7 + 7)€ + v(e + ve)

15/16



Tightness of the bound for AVI

0 —2ye =201 +7%)e 27+ +7)e ~2% e
C% o o o W 0 \W%
1 2 3 4
% 0 0 0 0
Vi —€ € 0 0
Vo —ve | —e —ye €+ ye 0

State 2: 0+ y(—€) = —2ye + e
State 3: 0 + y(—¢c — 7€) = —2(7 + 7)€ + v(e + ve)

15/16



Tightness of the bound for AVI

0 —2ye =201 +7%)e 27+ +7)e ~2% e
C% o o o W 0 \W%
1 2 3 4
Vo 0 0 0 0
Vi —€ € 0 0
Vo —ve | —e —ye €+ ye 0
V3 —726 —’726 —€ — Y€ — ’}/26 €+ e+ 'yze

State 2: 0+ y(—€) = —2ye + e
State 3: 0 + y(—¢c — 7€) = —2(7 + 7)€ + v(e + ve)

15/16



Tightness of the bound for AVI

0 ~2ye “2(v+7%)e =27+ +7)e ~2e
C% o o o W W%
1 2 3 4
Vo 0 0 0 0
Vi —€ € 0 0
Vo —ve | —e —ye €+ ye 0
V3 —726 —’726 —€ — Y€ — ’}/26 €+ e+ 'yze

State 2: 0+ y(—€) = —2ye + e
State 3: 0 + y(—¢c — 7€) = —2(7 + 7)€ + v(e + ve)

15/16



Tightness of the bound for AVI
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Tightness of the bound (Lesner and Scherrer,
2014)

0 —2ve  —2(y+7)e

OO

For any m and ¢, NSMPI generates a sequence of policies (7 )x>1
such that 7, acts optimally except in state k.
Thus, 7y = TyTk—1 ... Tk—r4+1 gets stuck in the loop

k, k+0—1, k+0-2, k+1, k

and therefore
2y — ¥

)=y
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