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Mathematical	morphology	

•  is	a	theory	and	technique	for	the	analysis	and	
processing	of	geometrical	structures,	
–  	based	on	set	theory,	lattice	theory,	topology,	and	
random	functions.	

•  most	commonly	applied	to	digital	images,		
– but	it	can	be	employed	as	well	on	graphs,	surface	
meshes,	solids,	and	many	other	spatial	structures.	

•  Basic	morphological	operators	are	erosion,	
dilation,	opening	and	closing	



Plan	

•  MorphMedian	and	semi-supervised	clustering	
– The	watershed	as	a	classifier	

•  Some	links	with	optimization	framework	
– The	Power	Watershed	framework	

•  Random	walker,	spectral	clustering	



Part	I:	Morphological	Median		
and	the	watershed	



Morphological	Median	

1.2. Mathematical Morphology and Supervised Learning 17

In [72], the author proposes the following morphological median as a method to obtain

the median element.

M(X,Y ) =

[

��0

{(X � �B) \ (Y  �B)} (1.2.1)

Here B indicates the unit disk structuring element, X��B indicates dilation, and Y  �B

indicates erosion. Now, defining a dilation distance as follows,

d(X,Z) = inf{� | Z ✓ X � �B} (1.2.2)

one can rephrase the morphological median as

M(X,Y ) = {x|d(X,x)  d(Y
c
, x)} = IZ(X | Y c

) (1.2.3)

The RHS is also referred to as influence zone of X with respect to Y
c.

Observe that , definition in (1.2.3) can be translated to edge weighted graphs. Let

G = (V,E,W ) be an edge weighted graph as before. Let X,Y be subsets of V . Using

the dissimilarity measure, ⇢, on the edge weighted graph instead of the dilation distance

as before. The dissimilarity measure is extended to sets using

⇢(X,Y ) = inf
x2X,y2Y

⇢(x, y). (1.2.4)

On the other hand, consider the supervised learning problem in the context of edge

weighted graphs - Let X0, X1 be the labelled set of points labelled 0 and 1 respectively.

Let V denote the set of all points including the unlabelled as well as labelled points.

Also assume that there exists a dissimilarity measure ⇢. Now, the supervised learning

problem requires a partition of V = M [M such that X0 ⇢ M and X1 ⇢ M . It then

easy to see that morphological median in (1.2.3) provides such a partition.

In what follows, we show that the partition provided by (1.2.3) satisfies some opti-

mality properties. This partition of the set of points is referred to as morphMedian for

ease of exposition.

Interpolation Problem

Option 2:
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Rewriting	Morphological	Median	
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Linear	SVM:	maximum	margin	



The	Maximum	Margin	Partition	
Maximum Margin Partition

V = Some set of points
fl(x , y) := Dissimilarity between x and y

fl(X , Y ) := inf
xœX ,yœY

fl(x , y)

X0 = Label 0 set X1 = Label 1 set
(Require)V = M0 fi M1 X0 µ M0, X1 µ M1
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The	Maximum	Margin	Partition	Maximum Margin Partition

V = Some set of points
fl(x , y) := Dissimilarity between x and y

fl(X , Y ) := inf
xœX ,yœY

fl(x , y)

X0 = Label 0 set X1 = Label 1 set
(Require)V = M0 fi M1 X0 µ M0, X1 µ M1

Result (Maximum Margin Partition)
Given the definitions as above, a partition V = M0 fi M1 is called the

maximum partition if it is

arg max
M0,M1

inf {fl(X0, M1), fl(X1, M0)}
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The	Maximum	Margin	Partition	

18 Chapter 1. Introduction and Overview

Maximum Margin Partition

Recall that, SVM operates by choosing the boundary which maximizes the margin be-

tween labelled points and the boundary. This is referred to the maximum margin prin-

ciple. This can be generalized to classifiers in the context edge weighted graphs as well.

Principle 1.1 (Maximum Margin Partition). Let (V, ⇢) be a set of points equipped with

a dissimilarity measure, X0 and X1 be the labelled subsets labelled 0 and 1 respectively.

A partition V = M [M is called Maximum Margin Partition if it maximizes

argmax
M

⇢̂(X0, X1,M) = argmax
M

�
inf

�
⇢(X0,M), ⇢(X1,M)

  
(1.2.5)

assuming that X0 ⇢ M and X1 ⇢ M .

Observe that ⇢(X0,M) measures the closest “distance” between the set of points la-

belled 0 and all the points that would have been labelled 1 after classification. This

represents the margin between the classes. Similarly ⇢(X1,M) represented the margin

between points labelled 1 and points that would be labelled 0 after classification. Max-

imizing both these quantities constitute the maximizing the margin as is the case with

SVM.

Given the notation as above, we have the following theorem.

Theorem 1.1. Given ⇢(., .), the partition obtained by morphMedian is optimal maxi-

mum margin partition.

The interesting aspect of the above theorem is the links between two seemingly dif-

ferent techniques - morphological medians and maximum margin classifiers. This allows

us to extend several of the morphological operators for supervised classification, in par-

ticular watersheds.

Observe that the behavior of classifier morphMedian above depends entirely on

the dissimilarity measure used. That is, there are no other parameters to control the

behavior.

Watersheds as classifiers

One of the most important consequences of the above theory is - it is justified to use

watersheds for classification. The watershed transform in MM has a rich history (see [61]).
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MorphMedian	

morphMedian

Recall:

m(X , Y ) = {x |d(X , x) Æ d(Y c , x)}
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MorphMedian	
morphMedian

Result
Given (V , fl), and X0, X1, every maximum margin partition is

morphMedian and vice versa.
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MorphMedian	morphMedian

V = Set of points
fl := Dissimilarity Measure

Result (morphMedian)
Let (V , fl) be defined as above. X0, X1 denote the labelled sets. Define the

morphMedian partition as any partition which satisfies

1 x œ X0 if fl(X0, x) < fl(X1, x)
2 x œ X1 if fl(X1, x) < fl(X0, x)
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Problem statement: the power watershed framework

Context: watersheds

For topographic purposes, the watershed has been studied since
the 19th century (Maxwell, Jordan, . . . )

L. Najman: From watersheds to infinity and beyond 5/45



Watersheds	

		

Problem statement: the power watershed framework

Context: watersheds

For topographic purposes, the watershed has been studied since
the 19th century (Maxwell, Jordan, . . . )

L. Najman: From watersheds to infinity and beyond 5/45

For	topographics	purposes,	the	watershed	has	been	studied	since	the	19th	century		
(Maxwell,	Jordan,	…)	



Watersheds	

•  One	hundred	years	later	
(1978),	it	was	introduced	
by	Digabel	and	Lantuéjoul	
for	image	segmentation	

•  And	popularized	by	L.	
Vincent	and	P.	Soille	in	
their	celebrated	1991	
PAMI	paper	
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The	family	of	discrete	watersheds	
Problem statement: the power watershed framework

The family of discrete watersheds

Topological watersheds

Only watersheds that preserve the altitudes of the passes

On pixels

Fusion graphs

Link between thinness,
region merging,
and watersheds

On edges

Watershed cuts

Optimality,
drop of water principle

Power watersheds

Framework for seeded image segmentation
(graph cuts, random walker, . . .)

Energy minimization
q = 2 =) uniqueness

Ultrametric watersheds

Hierarchical segmentation

On complexes

Simplicial stacks

Link between
collapse, watersheds

and optimal spanning forests

L. Najman: From watersheds to infinity and beyond 7/45
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Watershed	cuts	
Problem statement: the power watershed framework

Watershed cuts

Important idea (Cousty et al., PAMI 2009, 2010)

Defined by the drop of water principle

Equivalent to a catchment basins principle

Optimal – an equivalence with Minimum Spanning Trees

Graph cut

Topological cut

IFT algorithms

MST algorithms
(Boruvska, Prim, Kruskal)

Watershed cut

MSF cut

SPF cut

Basin cut

TOPOGRAPHICAL PARADIGMS

GRAYSCALE−TRANSFORM PARADIGMS

OPTIMALITY PARADIGMS

M−Border cut

(Meyer)

Flooding algorithm

Border cut

Flooding cut

Flow cut algorithm

(Dijkstra, Falcao et al.)

M−Border algorithm

L. Najman: From watersheds to infinity and beyond 8/45
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Minimum	spanning	forest	
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MSF	-	Example	
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Watershed	and	MSF	equivalence	



Watershed	cuts	as	classifiers	Watersheds as classifiers

Result
Given an edge weighted graph G = (V , E , W ), and a set of seeds

S = X0 fi X1, MSF-watershed returns a maximum margin partition with

set of points as V and

fl(x , y) = inf
fiœ�(x ,y)

sup
eœfi

W (e)
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Watershed-cut	as	classifiers	
for	semi-supervised	learning	

1.2. Mathematical Morphology and Supervised Learning 19

(a) (b) (c)

Figure 1.4: Example illustrating partition obtained using watersheds as classifiers.
(a) Gaussian Blobs dataset. (b) Two Circles dataset. (c) Two Moons dataset.

Initially, different algorithms for watersheds were devised based on two principles - drop

of water principle and flooding principle. In images these principles are not compatible

with each other [30]. In [29], these notions were extended to edge weighted graphs where

these two principles are proved to be compatible with each other.

Although, watersheds can be used for classification based on heuristics, few questions

remain - (a) What cost function does watershed optimize? (b) And if the cost function

reflect the needs of classification of general data? (c) How to improve the performance

of the watershed using the ideas from supervised learning? (d) How does it relate to

the existing techniques of supervised learning. All these can be answered using the

morphMedian framework above. These are discussed in detail in chapter 3

Figure 1.4 shows some results obtained by using watersheds as classifiers. Intuitively,

watersheds can be seen as a generalization of decision trees. Decision trees partition

the space with hyperplanes, while watersheds can partition the space arbitrarily. Just

as decision trees, watersheds form a base classifier on which techniques from machine

learning can be used for improving accuracy.

1.2.2 Regularization as Morphological Filtering

Another aspect of supervised learning is that of regularization. It is usually the case

that several classifiers can fit the training data perfectly, compromising on prediction

accuracy. To avoid this regularization is used. However, to our knowledge, there does not

exist a unifying definition of regularization. Here we give a formulation for regularization

based on mathematical morphology, and explore its consequences for the morphMedian

classifiers discussed above.



Results	for	SVM	
Watersheds as classifiers

SVM
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Morphological	regularization	20 Chapter 1. Introduction and Overview

(a) (b) (c)

Figure 1.5: Example illustrating effect the regularization. (a) Original Data. (b)
Partition obtained using MSF on (a) with some samples wrongly labelled. (c) Partition

obtained using MSF + Area Filter on (a) with some samples wrongly labelled.

Observe that the outcome of any regularization is that certain partitions are not

allowed or penalized, allowing one to focus on good partitions. Thus, one might as well

consider this as a starting point to define regularization.

Any restriction on the lattice of partitions is considered as regularization.

Incidentally, morphological filters are also defined as restrictions on lattices. Thus, it

is reasonable to conclude that one can easily adapt morphological filters as regularization

in supervised learning. This is yet another way in which mathematical morphology can

be used for supervised learning.

As an example, consider the Area filter (part of a larger set of connected operators

and filters [68, 69]) which heuristically filters out the components whose size is small.

Figure 1.5 illustrates the effect of using area filter as a regularization tool. Figure 1.5(c)

has much more smoother boundaries compared to figure 1.5(b).

The above experiments/results obtained using the methods described above are in-

tended to be a proof of concept rather than giving state of art results by itself. In chapter

3 we provide ways in which these ideas can be combined with other techniques to obtain

efficient classifiers. Three experiments are illustrated for exhibit the prospects:

Experiment 1 Recall that one way of looking at watersheds is by considering them as

generalized decision trees, which allows for arbitrary boundaries. The

classic way decision trees are extended is by considering the ensemble of

decision trees and averaging the results. The same can be used to improve

watersheds as well.

(a) Data	with	some	wrongly	labeled	points	
(b) MSF	partition	(Watershed-cut)	
(c) Area-filtered	watershed	



Work	in	progress	

•  The	watershed	is	a	classifier	
– Hence,	what	if	we	“ensemble”	watersheds?	

– Hence,	what	if	we	combine	them	with	Neural	nets	



Ensemble	watersheds	

1

TABLE I
RESULTS OBTAINED USING DIFFERENT METHODS ON DATASETS FROM CHAPPELLE

Method SSL1 SSL2 SSL3 SSL4 SSL5 SSL6 SSL7
watershed 96.53±0.70 95.66±0.87 99.77±0.22 51.35±3.64 55.19±1.48 95.70±0.45 54.84±1.32
IFT-SUM 96.96±0.53 95.17±0.24 95.06±1.22 53.92±2.95 61.15±0.76 90.06±0.85 64.60±1.96

RW 98.16±0.34 91.41±0.92 95.68±1.42 54.27±2.56 67.75±5.59 91.70±1.30 75.56±4.16
PW 97.99±0.49 89.42±0.78 95.68±1.42 52.22±2.29 67.75±5.59 91.68±1.36 75.56±4.16

SVM 93.78±0.67 90.81±0.57 56.87±0.81 60.00±2.81 83.57±0.80 22.16±0.49 84.49±1.22
1NN 96.96±0.53 95.18±0.24 95.06±1.22 53.92±2.95 61.15±0.75 90.06±0.85 64.61±1.97
RFC 95.36±0.87 87.74±0.58 91.42±0.64 55.76±2.33 72.75±0.89 90.51±1.06 70.45±1.75

Ensemblewatershed 98.17±0.35 92.71±1.17 99.38±0.90 53.16±3.14 64.39±3.11 95.09±0.94 68.29±1.77

This	morning	results!	



Ensemble	watersheds	

Ensemble Watersheds
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Using	watershed	as	a	layer		
of	Neural	Network	

3.4. Future Work 77

(a) (b)

Figure 3.11: Accuracy while training for CNN and CNN + Opening Layer. (a)
Training Accuracy (b) Validation Accuracy. Observe that adding the opening layer

dramatically improves the accuracy.

(a) (b) (c) (d)

Figure 3.12: Learning Representation. (a) Original Data. (b) Representation ob-
tained by simple NN. (c) Representation obtained by using siamese network. (d) Rep-
resentation obtained using watershed layer. Observe that the alternating structure is

preserved by using watershed.

on which we have to extrapolate it to the set V ⇥ V . If indeed the dissimilarity measure

is given between any two points, then the classification problem reduces to 1-Nearest

Neighbor.

One way to approach the problem above if by learning ⇢ using techniques such as

neural networks. The architecture of the neural networks used for this is called the

siamese networks, described in [25]. The appropriate cost function used is known as

triplet loss.

However, it is found that the structure of the data is not preserved with this method.

To illustrate this we perform the following experiment. We consider a simple data set

as in figure 3.12(a). This data set is a combination of three gaussian blobs alternatively

labelled, with centers at (1, 1), (3, 3) and (5, 5). The ideal representation of this dataset

would be its projection onto the line x = y. However, it turns out that neural networks

and siamese networks give the representation as in figures 3.12 (b) and (c) respectively.

An alternate to learning all the dissimilarities would be to learn only the dissimilarities

(a)	Data																								(b)	NN																	(c)	Siamese	Network					(d)	Siamese	+	WS	

Preserves	the	structure	of	the	data!	

(b),	(c)	and	(d)	are	representation	of	the	data	by	the	NN	
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Part	II:	Watershed	and	optimization	



Some	notations	
Problem statement: the power watershed framework

Notations

A simple, finite graph G = (V ,E ) with nodes vi and |V | = m
Edge: eij spanning two vertices vi and vj
Pairwise weight: wij for an edge eij ,

Unary weight: wi unary weights penalizing the (observed)
configuration at node vi .

We are looking for x , a regularized version of the observed
configuration y

y

x
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A	generic	formulation	
Problem statement: the power watershed framework

Motivation: the (original) power-watershed framework

Power-watershed with q � 0

Let q � 0, we set

W p(x) =
X

eij2E
wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V
wi
p|xi � fi |q

| {z }
Data term

(3)
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Random	walker	
Problem statement: the power watershed framework

Some graph-based segmentation tools: Random Walker

Combinatorial Dirichlet problem. [Grady 2006] (q=2)

Resolution of system of linear equations.

Advantages

Energy formulation ! extends to
a large class of problems

No blocking artefacts

Drawbacks

Requires a more centered markers
placement

Super-linear complexity
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3 4

1 3 4
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And	the	watershed?	
Problem statement: the power watershed framework

Some graph-based segmentation tools: the watershed

Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

Fast

Multilabel

Robust to markers size

Drawbacks

Leaking e↵ect

Non unique solution (di�cult
to get a non algorithmically

dependent result)
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The	Power	Watershed	framework	
Problem statement: the power watershed framework

Power watershed framework

x⇤p,q = argmin
x

X

eij2E
wij
p|xi � xj |q

| {z }
Smoothness term

+
X

vi2V
wi
p|xi � li |q

| {z }
Data term

x̄ = lim
p!1

x⇤p,q
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Convergence	of	RW	when	pè�	Problem statement: the power watershed framework

Convergence of RW when p !1 toward MSF cut

Input seeds

x⇤01 = argmin
x

X

eij2E
wij
01|xi � xj |2

| {z }
Smoothness term

+ D(x)| {z }
Data fidelity

solution x⇤01 cut: threshold of x⇤01
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x

X

eij2E
wij
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Convergence	of	RW	when	pè�	Problem statement: the power watershed framework

Convergence of RW when p !1 toward MSF cut

Input seeds

x13
⇤ = argmin

x

X

eij2E
wij
13|xi � xj |2

| {z }
Smoothness term

+ D(x)| {z }
Data fidelity

solution x13⇤ cut: threshold of x13⇤
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Convergence	of	RW	when	pè�	Problem statement: the power watershed framework

Convergence of RW when p !1 toward MSF cut

Input seeds

x18
⇤ = argmin

x

X

eij2E
wij
18|xi � xj |2

| {z }
Smoothness term

+ D(x)| {z }
Data fidelity

solution x18⇤ cut: threshold of x18⇤
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Convergence	of	RW	when	pè�	Problem statement: the power watershed framework

Convergence of RW when p !1 toward MSF cut

Input seeds

xp
⇤ = argmin

x

X

eij2E
wij
p|xi � xj |q

| {z }
Smoothness term

+ D(x)| {z }
Data fidelity

x̄ = limp!1 x⇤p cut: threshold of x̄

Theorems

When p !1,
the obtained cut is an
MSF cut.

when q > 1, the solution x̄ is
unique.
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The	(extended)		
Power	Watershed	framework	

Problem statement: the power watershed framework

Problem statment:
the (extended) power-watershed framework

Let p > 0, m > 0, n > 0 and

n real numbers 1 � �0 > �1 > . . .�n�1 > 0

Qp(x) =
X

0k<n
�p
k
Qk(x) (1)

where, for all 0  k < n, Qk : Rm ! R is a continuous function. We
search x? 2 Rm such that

x? 2 lim
p!1

argmin
x2Rm

Qp(x) (2)

L. Najman: From watersheds to infinity and beyond 2/46



Main	PW	theorem	
Scale-based approach for the Power Watershed framework

Main theorem

Theorem

Set

M0 = argmin
x2Rm

Q0(x) (4)

8 1  k < n, Mk = argmin
x2Mk�1

Qk(x) (5)

Any convergent sequence (xp)p>0 of minimizers of Qp converges to
some point of Mn�1.
Furthermore, we can estimate the minimum of Qp as follows:

min
x2Rm

Qp(x) =
X

0k<n
�p
k
mk + o(�

p

n�1) (6)

where mk = minx2Mk Qk(x).
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Spectral	clustering:	
intuitive	explanation	

An application to spectral clustering: the power-ratio cut

Spectral clustering: Intuitive explaination

Let L be one of the (many) graph-Laplacians.
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Spectral	clustering:	ratio-cut	
An application to spectral clustering: the power-ratio cut

Spectral clustering: Ratio-cut

Problem (Ratio-cut algorithm)

For finding k cluster, solve

minimize
H2Rm⇥k

Tr(HtLH)

subject to HtH = I

where L is the graph-laplacian

D is the diagonal matrix diag(d1, . . . , dn) with di =
P
j
wij , and

L = D �W .

L. Najman: From watersheds to infinity and beyond 32/46



Ratio-cut	
An application to spectral clustering: the power-ratio cut

Power ratio-cut Joint work with A. Challa, S. Danda and B.S. Daya Sagar

Let Lk as the graph-laplacian of the subgraph induced by the edges
whose weights are exactly wk .

minimize
H2Rm⇥k

jX

k=1

wkTr(H
tLkH)

subject to HtH = I

Ratio-cut
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Power	Ratio-cut	An application to spectral clustering: the power-ratio cut

Power ratio-cut Joint work with A. Challa, S. Danda and B.S. Daya Sagar

Let Lk as the graph-laplacian of the subgraph induced by the edges
whose weights are exactly wk .

lim
p!1

minimize
H2Rm⇥k

jX

k=1

wp
k
Tr(HtLkH)

subject to HtH = I

Ratio-cut Power ratio-cut
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PR-cut	in	practice	

•  Cluster	the	weights	with	(for	example)	K-means	

•  Apply	a	MST-like	algorithm	on	the	clustered	
weights	to	get	a	rough	clustering		

•  Refine	the	(weighted)	borders	of	the	clusters	
with	Ratio-cut	



Replacing	NCut	with	PRCut	in	MCG	An application to spectral clustering: the power-ratio cut

Replacing NCut with PRcut in MCG

Image GT PRCut NCut

Remark

Same quality of results obtained much faster
replacing Normalized Cut by Power Ratio cut

in the Multiscale Combinatorial Grouping technique
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Main	message	
Problem statement: the power watershed framework

Main message

The center of the clusters are easy to cluster

Borders are more di�cult

Hence, apply an easy and fast algorithm on the centers (such as
a MST), and do something more fancy on the borders

Question

How do we identify the borders and the centers of the cluster?
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Use	a	MST!	



MM	in	data	science	

•  Is	usefull	J	

	

•  Need	to	revisit	everything	we	have	done		
– From	a	new	perspective	

•  Much	work	to	do!	

Conclusion

Questions

Source code available from

PW: (in C) http://sourceforge.net/projects/powerwatershed/
PRCut: (in Python) https://github.com/ac20/
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