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Inverse Problems Regularization



Set Up Y. De Castro

Inverse problem: recover u ∈ E from y ∈ Rm through a linear operator
Φ : E → Rm perturbed by an operator P : Rm→ Rm,

y = P(Φu)

where E is a (locally convex Hausdorff) vector space and m ∈ N.

Regularization: One may consider

inf
u∈E

f (Φu) +R(u), (P )

where R : E → R∪ {+∞} convex function called regularizer and f

arbitrary function (convex or non-convex) called data fitting term.
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Representer of Tikhonov regularization Y. De Castro

One can be interested in [Scholkopf and Smola, 2001]

min
u∈Rm

1
2



Φu − y




2
2 +

1
2



Lu




2
2 ,

where Φ ∈ Rm×n, L ∈ Rp×n s.t. kerΦ∩ kerL= {0}.

Solutions are

u? =
m
∑

i=1

αiψi + uK ,

with uK ∈ ker(L) and ψi = (Φ>Φ+ L>L)−1(φi ) denoting φ>i ∈ R
n the

i-th row of Φ.
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Lineality Space, Extreme Rays



Linearly Closed, Recession Cone and Lineality Space

Let E be a real vector space and let C ⊆ E be a convex set.

Linearly Closed (resp. linearly bounded) as "Topology-free" Diet

Any intersection of C and a line of E is closed (resp. bounded) for the
natural topology of the line.

Recession Cone, rec(C )

Set of all v ∈ E s.t. C +R∗+v ⊆ C . It is a convex cone.

Lineality Space, lin(C )

lin(C ) := rec(C )∩ (−rec(C ))
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Extreme points and Extreme Rays

Extreme Points and Rays
Extreme Points: points p ∈ C s.t. C \ {p} is convex;

Extreme Rays: rays ρ ∈ C s.t. if x ,y ∈ C and ]x ,y [ intersects ρ,
then ]x ,y [⊂ ρ;

Faces FC (p): Union of {p} and all the open segments in C which
have p as an inner point;

Faces description and Quotienting by lines

Denote W a supplement of lin(C ) and eC := C ∩W then

C = eC + lin(C ), and {F
eC (p) + lin(C )}p∈ eC = {FC (p)}p∈C

is the partition of C in elementary faces.
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A Representer Theorem



Representer Theorem

Denote t? the optimal value of (1) given by

min
u∈E

R(u) s.t. Φu = y , (1)

S ? its solution set, and C ?
def.
=
�

u ∈ E : R(u)≤ t?
	

.

Theorem ([Boyer et al., 2018])

If infE R < t? <+∞, S ? nonempty, C ? is linearly closed and contains
no line, and p ∈ S ? s.t. j is the dimension of the face FS ?(p).
Then p belongs to a face of C ? with dimension at most m+ j − 1 and
it can be written as a convex combination of

m+ j extreme points of C ?,

or m+ j − 1 points of C ?, each an extreme point of C ? or in an
extreme ray of C ?.
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On a figure

ρ1

ρ2

S ?

e0

e1

e2

Φ−1({y})

C ?

Figure 1: For m= 2 with S ? = C ? ∩Φ−1({y}) made of an extreme point and
an extreme ray. The extreme point is a convex combination of {e0,e1}.
Depending on their position, the points in the ray are a convex combination
of {e0,e1,e2} or a pair of points, one in ρ1 and the other in ρ2.
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Quotienting by lines on a figure

E/K

C ?

Φ−1({y})

S ?

C̃ ?
q1

q2

K = lin(C ?)

Figure 2: Quotienting by K = lin(C ?) yields a level set fC ? with no line.

With q̃1, . . . , q̃r ∈ C̃ ?, d def.
= dimΦ(K ), r ≤m+ j − d (−1),

p =
r
∑

i=1

θi ψ
−1
K (q̃i ,0)

︸ ︷︷ ︸

qi∈E

+uK , where θi ≥ 0,
r
∑

i=1

θi = 1, and uK ∈ K .
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Examples of Applications



Linear Programming and the Moment Problem

inf
µ∈M+(Ω)
Φµ=y

〈ψ,u〉. (2)

with Ω compact metric space, M+(Ω) nonnegative Radon measures,
ψ and (φi )1≤i≤m continuous.

Assume that the solution set (2) is nonempty. Then, its extreme
points are m-sparse, i.e. of the form:

u =
m
∑

i=1

αiδxi , xi ∈ Ω,αi ≥ 0.
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The Total Variation ball

BM =
�

u ∈M (Ω) : ‖u‖M ≤ 1
	

with Ω open subset of Rd and M (Ω) Radon measures. One has

ext(BM ) = {±δx , x ∈ Ω}

Total variation regularized problems of the form:

inf
u∈M

f (Φu) + ‖u‖M ,

yield m-sparse solutions (under an existence assumption).
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The Total Gradient Variation 1/2

For any locally integrable function u define

TV (u)
def.
= sup

�∫

udiv(φ)dx ,φ ∈ C1
c (R

d)d , sup
x∈Rd
‖φ(x)‖2 ≤ 1

�

.

If finite then gradient Du is a Radon measure and

TV (u) =

∫

Rd
|Du|= ‖Du‖(M (Rd ))d .

Theorem ([Fleming, 1957, Ambrosio et al., 2001])

Extreme points of the TV unit ball are indicators of simple sets
normalized by their perimeter, i.e. u = ± 1F

TV (1F )
, where F is an

indecomposable and saturated subset of Rd .
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The Total Gradient Variation 2/2

Minimizing the total variation s.t. a finite number of linear constraints
can be expressed as a sum of a small number of indicators of simple
sets. Explaining the stair-casing effect [Nikolova, 2000].
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Questions?
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