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Inverse Problems Regularization



Set Up Y. De Castro

Inverse problem: recover u € E from y € R™ through a linear operator
®: E — R"™ perturbed by an operator P: R™ — R™,

y = P(ou)

where E is a (locally convex Hausdorff) vector space and m € N.



Set Up Y. De Castro

Inverse problem: recover u € E from y € R™ through a linear operator
®: E — R"™ perturbed by an operator P: R™ — R™,

y = P(ou)

where E is a (locally convex Hausdorff) vector space and m € N.

Regularization: One may consider
inf f(®u)+ R(u), (2)
uekE

where R : E - RU{+00} convex function called regularizer and f
arbitrary function (convex or non-convex) called data fitting term.
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Representer of Tikhonov regularization Y. De Castro

One can be interested in [Scholkopf and Smola, 2001]
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where ® € R™" [ € RP*" s.t. ker® Nkerl = {0}.



Representer of Tikhonov regularization Y. De Castro

One can be interested in [Scholkopf and Smola, 2001]
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where ® € R™" [ € RP*" s.t. ker® Nkerl = {0}.

Solutions are

m

u = E oY+ ug,

i=1
with ug € ker(L) and o; = (®'®+ LTL)"*(¢;) denoting ¢ €R" the
i-th row of ®.
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Lineality Space, Extreme Rays



Linearly Closed, Recession Cone and Lineality Space

Let E be a real vector space and let C C E be a convex set.

Linearly Closed (resp. linearly bounded) as "Topology-free" Diet

Any intersection of C and a line of E is closed (resp. bounded) for the
natural topology of the line.
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Linearly Closed, Recession Cone and Lineality Space

Let E be a real vector space and let C C E be a convex set.

Linearly Closed (resp. linearly bounded) as "Topology-free" Diet

Any intersection of C and a line of E is closed (resp. bounded) for the
natural topology of the line.

Recession Cone, rec(C)

Setofallve Est. C +RivEC. It is a convex cone.

Lineality Space, lin(C)

lin(C) :=rec(C) N (—rec(C))
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Extreme points and Extreme Rays

Extreme Points and Rays

@ Extreme Points: points p€ C s.t. C\ {p} is convex;
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Extreme points and Extreme Rays

Extreme Points and Rays
@ Extreme Points: points p€ C s.t. C\ {p} is convex;

o Extreme Rays: rays p € C s.t. if x,y € C and |x, y[ intersects p,
then |x, y[C p;

o Faces Z-(p): Union of {p} and all the open segments in C which
have p as an inner point;

Faces description and Quotienting by lines

Denote W a supplement of lin(C) and C := CN W then
C = C+1in(C), and {F&(p) +1in(C)} ez = {Fc(P)}pec

is the partition of C in elementary faces.
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A Representer Theorem




Representer Theorem

Denote t* the optimal value of (1) given by
min R(u) st. du=y, (1)

* its solution set, and C* {ueE : R(u)<t}.



Representer Theorem

Denote t* the optimal value of (1) given by

TeIER(U) st. du=y, (1)

& its solution set, and

Theorem ([Boyer et al., 2018])

If infe R< t* < +00, &* nonempty, C* is linearly closed and contains
no line, and p € &* s.t. .
Then p belongs to a face of C* with dimension at most m+ j—1 and
it can be written as a convex combination of

@ m-j extreme points of C*,

@ or m+j—1 points of C*, each an extreme point of C* or in an
extreme ray of C*.

“



Figure 1: For m =2 with &* = C*n®~!({y}) made of an extreme point and
an extreme ray. The extreme point is a convex combination of {ey, e;}.
Depending on their position, the points in the ray are a convex combination
of {eg, €1, e} or a pair of points, one in p; and the other in p,.



Quotienting by lines on a figure
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Figure 2: Quotienting by K =1in(C*) yields a level set C* with no line.



Quotienting by lines on a figure
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Figure 2: Quotienting by K =1in(C*) yields a level set C* with no line.

def.

With §y,...,§, € C*, d = dim®(K), r<m+j—d (1),

p= Z(‘)l (G;,0)+uyk, where 9;20,29;:1, and uk € K.

q;€E S



Examples of Applications




Linear Programming and the Moment Problem

inf ,u). 2
oy (mw ) (2)
Pu=y
with  compact metric space, .4, (Q2) nonnegative Radon measures,

Y and (¢;)1<i<m continuous.



Linear Programming and the Moment Problem

inf ,u). 2
oy (Q)W ) (2)
Pu=y
with  compact metric space, .4, (Q2) nonnegative Radon measures,

Y and (¢;)1<i<m continuous.

Assume that the solution set (2) is nonempty. Then, its extreme
points are m-sparse, i.e. of the form:

m
u:Za;(SXi, X,'GQ,(X,‘ZO.
i=1
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The Total Variation ball

By={ue#(Q) : llull, <1}

with © open subset of RY and .#(£2) Radon measures. One has

ext(B ) ={%£6,, x€Q}

g D
ERp
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The Total Variation ball

B/ﬂ:{ue//t(Q) : ||u||/ﬂ51}

with © open subset of RY and .#(£2) Radon measures. One has

ext(B ,)={%5,, x€Q}

Total variation regularized problems of the form:
nf £(@u) +llull 4,

yield m-sparse solutions (under an existence assumption).
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The Total Gradient Variation 1/2

For any locally integrable function u define

x€RY

V()= Sup(f udiv(¢) dx, ¢ € CH(RY)?, sup [|§(x)ll2 < 1)-

If finite then gradient Du is a Radon measure and

TV(u) —f |Dul = [|Dull( g (rey)e-
R4

g D
ERp
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The Total Gradient Variation 1/2

For any locally integrable function u define
TV(u) " p(f udiv() dx, ¢ € CLRY)?, sup [l (x)l, < 1).
x€RY

If finite then gradient Du is a Radon measure and

TV(U)—f |Dul = || Dull (g (re))e
R4

Theorem ([Fleming, 1957, Ambrosio et al., 2001])

Extreme points of the TV unit ball are indicators of simple sets

normalized by their perimeter, i.e. u==+ where F is an

1e
TV(1g)’
indecomposable and saturated subset of RY.
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The Total Gradient Variation 2/2

s.t. a finite number of linear constraints
can be expressed as a
. Explaining the stair-casing effect [Nikolova, 2000].

)
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The Total Gradient Variation 2/2

Minimizing the total variation s.t. a finite number of linear constraints
can be expressed as a sum of a small number of indicators of simple
sets. Explaining the stair-casing effect [Nikolova, 2000].

)
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