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Example of problems of interest

Given two shapes, find a diffeomorphism of R3 that maps one shape onto
the other



Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

Example of problems of interest

Given two shapes, find a diffeomorphism of R3 that maps one shape onto
the other

Different data types and different way of representing them.

Figure – Two slices of 3D brain images of the same subject at different ages
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Variety of shapes

Figure – Different anatomical structures extracted from MRI data
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Variety of shapes

Figure – Different anatomical structures extracted from MRI data
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Variational formulation

Find the best deformation, minimize

J (φ) = inf
φ∈GV

d(φ.A,B)2︸ ︷︷ ︸
similarity measure

(1)
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Variational formulation

Find the best deformation, minimize

������������J (φ) = inf
φ∈GV

d(φ.A,B)2︸ ︷︷ ︸
similarity measure

(1)

Tychonov regularization:

J (φ) = R(φ)︸ ︷︷ ︸
Regularization

+
1

2σ2
d(φ.A,B)2︸ ︷︷ ︸

similarity measure

. (2)

Choice of similarity measure,

Choice of the deformation regularization,

Choice of the optimization method.
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A Riemannian approach to diffeomorphic registration

Several diffeomorphic registration methods are available:

• Free-form deformations B-spline-based diffeomorphisms by D.
Rueckert

• Log-demons (X.Pennec et al.)

• Large Deformations by Diffeomorphisms (M. Miller,A. Trouvé, L.
Younes)
Riemannian framework: Right-invariant metric on the group

of diffeomorphisms and corresponding metric on objects.
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Why does the Riemannian framework matter?
Generalizations of statistical tools in Euclidean space:

• Distance often given by a Riemannian metric.

• Straight lines → geodesic defined by

Variational definition: arg min
c(t)

∫ 1

0

‖ċ‖2
c(t) dt = 0 ,

Equivalent (local) definition: ∇ċ ċ = c̈ + Γ(c)(ċ, ċ) = 0 .

• Average → Fréchet/Karcher mean.

Variational definition: arg min{x → E [d2(x , y)]dµ(y)}
Critical point definition: E [∇xd2(x , y)]dµ(y)] = 0 .

• PCA → Tangent PCA or PGA.

• Geodesic regression, cubic regression...(variational or algebraic)

Riemannian metric needed, or at least a connection.

Pitfalls:

• Loose uniqueness of geodesic or average (positive curvature).

• Equivalent definitions diverge (generalisation of PCA).
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What needs to be implemented?

Solve the control problem:

min

∫ 1

0

‖vt‖2
H dt + d(I (t = 1, x), J)2 under the constraint (3)

{
İ + 〈∇I , v〉 = 0 ,

I (t = 0, x) = I0(x) .
(4)

At a critical point, shooting equations on I (t, x) the image, and P(t, x)
the momentum: 

İ + 〈∇I , v〉 = 0 ,

Ṗ + div(Pv) = 0 ,

v + K ? (P∇I ) = 0 .

(5)

Optimization on the initial momentum using adjoint equations,
equivalently, using automatic differentiation.
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Interpolation, Extrapolation

Figure – Geodesic regression (MICCAI 2011)
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Interpolation, Extrapolation

Figure – Extrapolation of happiness
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Karcher mean on 3D images

Init. guesses

1 iteration

2 iterations

3 iterations
A1
i A2

i A3
i A4

i

Figure – Average image estimates Am
i , m ∈ {1, · · · , 4} after i =0, 1, 2 and 3

iterations.
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How to smoothly interpolate longitudinal data
In the Euclidean space:

Figure – Sparse data from a sinus curve
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How to smoothly interpolate longitudinal data

In the Euclidean space:

Minimizing the L2 norm of the speed → piecewise linear interpolation

Figure – Linear interpolation of the data.
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How to smoothly interpolate longitudinal data

In the Euclidean space:

Minimizing the L2 norm of the acceleration → cubic spline interpolation

Figure – Cubic spline interpolation of the data.
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Riemannian cubic splines

Acceleration on a Riemannian manifold M: let c : I → M be a C 2 curve.
The notion of acceleration is:

D

dt
ċ(t) = ∇ċ ċ(= c̈k +

∑
i,j

ċiΓ
k
i,j ċj) (6)

with ∇ the Levi-Civita connection.

• Noakes, Crouch, Silva-Leite (SO3 optimal control problem)

• Trouvé, Vialard (on landmarks, finite dimensional parametrization of
the group of diffeomorphisms, QAM, 2012).

• Singh, Vialard, Niethammer (IEEE TMI, 2015).
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Riemannian cubic splines

Acceleration on a Riemannian manifold M: let c : I → M be a C 2 curve.
The notion of acceleration is:

D

dt
ċ(t) = ∇ċ ċ(= c̈k +

∑
i,j

ċiΓ
k
i,j ċj) (6)

with ∇ the Levi-Civita connection.
Riemannian (variational) splines:

inf
c

∫ 1

0

1

2
|∇ċt ċt |2M +

ε

2
|ċt |2Mdt . (7)

subject to c(i) = ci and ċ(i) = vi for i = 0, 1.

• Noakes, Crouch, Silva-Leite (SO3 optimal control problem)

• Trouvé, Vialard (on landmarks, finite dimensional parametrization of
the group of diffeomorphisms, QAM, 2012).

• Singh, Vialard, Niethammer (IEEE TMI, 2015).
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What metric to choose?
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Choosing the right-invariant metric
Right-invariant metric: Eulerian fluid dynamic viewpoint on
regularization.
Space V of vector fields is defined equivalently by

• its kernel K such as Gaussian kernel,

• its differential operator, for instance (Id−σ∆)n for Sobolev spaces.

The norm on V is simply

‖v‖2
V =

∫
Ω

〈v(x), (Lv)(x)〉 dx =

∫
Ω

(L1/2v)2(x) dx .

Scale parameter important!

kσ(x , y) = e−
‖x−y‖2

σ2 kernel/operator (Id−σ∆)n (8)

• σ small: good matching but non regular deformations and more
local minima.

• σ large: poor matching but regular deformations and more global
minima.
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Sum of kernels and multiscale
Choice of mixture of Gaussian kernels: (Risser, Vialard et al. 2011)

K (x , y) =
n∑

i=1

αie
− ‖x−y‖2

σ2
i (9)

Figure – Left to right: Small scale, large scale and multi scale.
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From Eulerian to Lagrangian viewpoints

Spatial correlation of the deformation: need for local deformability on the
tissues.
Toward a more Lagrangian point of view.

How to introduce spatially varying metric?

Using kernels: χi being a partition of unity of the domain.

K =
n∑

i=1

χiKiχi , . (10)

This kernel is associated to the following variational interpretation:

‖v‖2 = min
(v1,...,vn)∈V1×...×Vn

{
n∑

i=1

‖vi‖2
Vi

∣∣∣ n∑
i=1

χivi = v

}
. (11)



Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

From Eulerian to Lagrangian viewpoints

Spatial correlation of the deformation: need for local deformability on the
tissues.
Toward a more Lagrangian point of view.

How to introduce spatially varying metric?

Using kernels: χi being a partition of unity of the domain.

K =
n∑

i=1

χiKiχi , . (10)

This kernel is associated to the following variational interpretation:

‖v‖2 = min
(v1,...,vn)∈V1×...×Vn

{
n∑

i=1

‖vi‖2
Vi

∣∣∣ n∑
i=1

χivi = v

}
. (11)



Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

Learning the metric

• Choice of a simple model for diffeomorphisms (SVF).

• Optimize on the choice of the metric: partition of unity and weights.

• Make it data adaptive using NN parametrization.

More precisely,

v0(x)
def.
=

N−1∑
i=0

√
wi (x)

∫
y

Gi (|x − y |)
√

wi (y)m0(y) dy (12)

m∗ = argmin
m0

λ〈m0, v0〉+Sim[I0◦Φ−1(1), I1] + λOMT

∫
ÔMT(w(x)) dx +

λTV

∫
γ(‖∇I0(x)‖)

√√√√N−1∑
i=0

‖∇ωi (x)‖2
2 dx , (13)

subject to the constraints Φ−1
t + DΦ−1v = 0 and Φ−1(0) = id;

λTV , λOMT ≥ 0
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Learning the metric

Method mean std 1% 5% 50% 95% 99%
FLIRT 0.394 0.031 0.334 0.345 0.396 0.442 0.463
AIR 0.423 0.030 0.362 0.377 0.421 0.483 0.492
ANIMAL 0.426 0.037 0.328 0.367 0.425 0.483 0.498
ART 0.503 0.031 0.446 0.452 0.506 0.556 0.563
Demons 0.462 0.029 0.407 0.421 0.461 0.510 0.531
FNIRT 0.463 0.036 0.381 0.410 0.463 0.519 0.537
Fluid 0.462 0.031 0.401 0.410 0.462 0.516 0.532
SICLE 0.419 0.044 0.300 0.330 0.424 0.475 0.504
SyN 0.514 0.033 0.454 0.460 0.515 0.565 0.578
SPM5N8 0.365 0.045 0.257 0.293 0.370 0.426 0.455
SPM5N 0.420 0.031 0.361 0.376 0.418 0.471 0.494
SPM5U 0.438 0.029 0.373 0.394 0.437 0.489 0.502
SPM5D 0.512 0.056 0.262 0.445 0.523 0.570 0.579

m/c stage 0 0.423 0.029 0.363 0.381 0.423 0.470 0.490
m/c stage 1 0.444 0.031 0.387 0.399 0.446 0.493 0.506
m/c stage 2 0.518 0.035 0.454 0.461 0.523 0.570 0.583
c/c stage 0 0.423 0.029 0.363 0.381 0.423 0.470 0.490
c/c stage 1 0.439 0.031 0.382 0.394 0.441 0.488 0.501

c/c stage 2 0.523 0.034 0.458 0.466 0.528 0.573 0.586
i/c stage 0 0.423 0.029 0.363 0.381 0.423 0.470 0.490
i/c stage 1 0.445 0.031 0.388 0.400 0.447 0.494 0.507
i/c stage 2 0.520 0.035 0.456 0.462 0.525 0.571 0.584

Table – Mean target overlap ratios for different methods. Best results are in
bold. Niethammer, Kwitt, Vialard.
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A new similarity measure

J (φ) = R(φ)︸ ︷︷ ︸
Regularization

+
1

2σ2
d(φ.A,B)2︸ ︷︷ ︸

similarity measure

. (14)

Mild constraints:

• Fast to evaluate

• Differentiable

• Convex

Examples: SSD, normalized cross correlation, LCC.

• Locality/Semi-locality.

More global similarity measure: Optimal Transport

Why? impressive numerical advances in the recent years.
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Optimal transport

Given a metric space (X , d), optimal transport is a natural way to lift this
metric to P(X ) the space of probability measures (or nonnegative
densities that integrates to 1).

Essentially, W (δx , δy ) = d(x , y).

For data applications, NOT EVERYTHING IS A DENSITY !
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Static Formulation

Monge formulation (1781)

Let µ, ν ∈ P+(M),

Minimize

∫
M

c(x , ϕ(x))dµ (15)

among the map s.t. ϕ∗(µ) = ν.

1 ill posed problem, the constraint may not be satisfied.

2 the constraint can hardly be made weakly closed.

→ Relaxation of the Monge problem.
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Static Formulation

Kantorovich formulation (1942)

Let µ, ν ∈ P+(M), define D by

D(µ, ν)= inf
γ∈P(M2)

{∫
M2

c(x , y)dγ(x , y) : π1
∗γ = µ and π2

∗γ = ν

}

1 Existence result: c lower semi-continuous and bounded from below.

2 Also valid in Polish spaces.

3 If c(x , y) = 1
p |x − y |p, D1/p is the Wasserstein distance denoted by

Wp.

Linear optimization problem and associated numerical methods.
Recently introduced, entropic regularization. (C. Léonard, M. Cuturi, J.C.
Zambrini <- Schrödinger)
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A simple example where Monge = Kantorovich

Pn
+(Ω)

def.
=

{
µ =

n∑
i=1

1

n
δxi ; mi ≥ 0, xi ∈ Ω

}

Bn
def.
=

γ ∈ Mn(R) ; γ(i , j) ≥ 0,
n∑

i=1

γ(i , j) =
1

n

n∑
j=1

γ(i , j) =
1

n


The Kantorovich problem on Pn

+(Ω)

Let ν =
∑n

j=1
1
nδyj and µ =

∑n
j=1

1
nδxj , then

D(µ, ν)= inf
γ∈Bn

∑
i,j

c(xi , yj)γ(i , j) s.t.

{∑n
j=1 γ(i , j) = 1

n∑n
i=1 γ(i , j) = 1

n

Linear optimization problem achieved at an extremal point of Bn: ( 1
nP )

with P a permutation matrix.
→ A Monge solution to the Kantorovich problem.
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Dynamic formulation (Benamou-Brenier)
For geodesic costs, for instance c(x , y) = 1

2 |x − y |2

inf E(v) =
1

2

∫ 1

0

∫
M

|v(x)|2ρ(x) dx dt , (16)

s.t. {
ρ̇+∇ · (vρ) = 0

ρ(0) = µ0 and ρ(1) = µ1 .
(17)

Convex reformulation: Change of variable: momentum m = ρv ,

inf E(m) =
1

2

∫ 1

0

∫
M

|m(x)|2

ρ(x)
dx dt , (18)

s.t. {
ρ̇+∇ ·m = 0

ρ(0) = µ0 and ρ(1) = µ1 .
(19)

where (ρ,m) ∈M([0, 1]×M,R× Rd).

Existence of minimizers: Fenchel-Rockafellar.
Numerics: First-order splitting algorithm: Douglas-Rachford.
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Available numerical methods

• Auction algorithm O(N3).

• Proximal methods on dynamic (PDE) formulation (Benamou,
Brenier), 105 points, restricted to W2.

• Newton method for semi-discrete methods (Mérigot, Levy), 107

points, restricted to W2.

• Approximation by entropic regularization, apply to any cost c, 109

points.
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Starting point (2015) and initial motivation

Optimal transport applications: Imaging, machine learning, gradient
flows, ...

Bottleneck in optimal transport: data has fixed total mass.

• Relax the mass constraint to extend OT distance between positive
measures of arbitrary mass.

• Develop associated numerical algorithms.
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Unbalanced optimal transport

Figure – Optimal transport between bimodal densities
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Unbalanced optimal transport

Figure – Another transformation
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An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ · (ρv) + αρ ,

where α can be understood as the growth rate.

WF2 def.
= inf

(v ,α)

1

2

∫ 1

0

∫
M

|v(x , t)|2ρ(x , t) dx dt

+
δ2

2

∫ 1

0

∫
M

α(x , t)2ρ(x , t) dx dt .

where δ is a length parameter.

Remark: very natural and not studied before.
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Convex reformulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ ·m + µ .

The Wasserstein-Fisher-Rao metric:

WF2 def.
= inf

(v ,α)

1

2

∫ 1

0

∫
M

|m(x , t)|2

ρ(x , t)
dx dt +

δ2

2

∫ 1

0

∫
M

µ(x , t)2

ρ(x , t)
dx dt .

• Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

• Convex and 1-homogeneous: convex analysis (existence and more)

• Numerics: First-order splitting algorithm: Douglas-Rachford.

• Code available at
https://github.com/lchizat/optimal-transport/

https://github.com/lchizat/optimal-transport/


Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

Convex reformulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ ·m + µ .

The Wasserstein-Fisher-Rao metric:

WF2 def.
= inf

(v ,α)

1

2

∫ 1

0

∫
M

|m(x , t)|2

ρ(x , t)
dx dt +

δ2

2

∫ 1

0

∫
M

µ(x , t)2

ρ(x , t)
dx dt .

• Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

• Convex and 1-homogeneous: convex analysis (existence and more)

• Numerics: First-order splitting algorithm: Douglas-Rachford.

• Code available at
https://github.com/lchizat/optimal-transport/

https://github.com/lchizat/optimal-transport/


Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

Numerical simulations

Figure – WFR geodesic between bimodal densities
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Numerical simulations

•
t = 0 t = 1t = 0.5

ρ0 ρ1

•
t = 0 t = 1t = 0.5

ρ0 ρ1

Figure – Geodesics between ρ0 and ρ1 for (1st row) Hellinger, (2nd row) W2,
(3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and Fisher-Rao, L.
Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard, FoCM, 2016.
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A relaxed static OT formulation

Define

KL(γ, ν) =

∫
dγ

dν
log

(
dγ

dν

)
dν + |ν| − |γ|

WF 2(ρ1, ρ2) = inf
γ

KL(Proj1∗ γ, ρ1) + KL(Proj2∗ γ, ρ2)

−
∫
M2
γ(x , y) log(cos2(d(x , y)/2 ∧ π/2))dx dy

Theorem (Gallouet - Vialard)

On a Riemannian manifold (compact without boundary), the static and dynamic
formulations are equal.
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Idea: Generalize Otto’s Riemannian submersion

SDiff(M): Isotropy

subgroup of µ

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A Riemannian submersion: SDiff(M) as a Riemannian submanifold of
L2(M,M): Incompressible Euler equation on SDiff(M)
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Idea: Generalize Otto’s Riemannian submersion

Isotropy

subgroup of µ

(Dens(M),WFR) µ

Diff(M) n C∞(M,R∗+)

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2µ)

Figure – The same picture in our case: what is the corresponding equation to
Euler?
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New algorithm

Scaling Algorithms for Unbalanced Transport Problems, L. Chizat, G.
Peyré, B. Schmitzer, F.-X. Vialard.

• Use of entropic regularization.

WFε
2(ρ1, ρ2) = inf

γ
λKL(Proj1∗ γ, ρ1) + λKL(Proj2∗ γ, ρ2)

−
∫
M2

γ(x , y) log(cos2(d(x , y)/2 ∧ π/2))dx dy + εKL(γ, µ0) .

Optimality conditions imply γ = a(x)b(y)K (x , y) with

K (x , y) = e−
1
ε c(x,y) and c(x , y) = − log(cos2(d(x , y))).
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Scaling algorithms
Define

h(p, s)
def.
= (p/s)λ/(λ+ε)

and
Marginal1(i) =

∑
j

aiKi,jbj Marginal2(j) =
∑
i

aiKi,jbj .

function ScalingAlgo(K,µ, ν)
b ← 1J

repeat
a← h(Marginal1, µ)
b ← h(Marginal2, ν)

until stopping criterion
return (aiKi,jbj)i,j

end function

• Alternate projection algorithm (contraction for a Hilbert type metric,
generalization of Sinkhorn’s proof).

• Applications to color transfer, Fréchet-Karcher mean (barycenters).

• Simulations for gradient flows.
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Application to color transfer

Figure – Transporting the color histograms: initial and final image

Optimal transport Range constraint

Kullback-Leibler Total variation
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Barycenters : Wasserstein
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Barycenters : Wasserstein



Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

Barycenters : Unbalanced (GHK)
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Incompressible Euler and optimal transport

Optimal transport appears in the projection onto SDiff in Brenier’s work.

The Camassa-Holm equation is the corresponding fluid dynamic equation
for WF .
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Otto’s Riemannian submersion for WFR

Isotropy

subgroup of µ

(Dens(M),WFR) µ

Diff(M) n C∞(M,R∗+)

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2µ)

Figure – The same picture in our case: what is the corresponding equation to
Euler?
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The isotropy subgroup for unbalanced optimal transport

The induced metric on the isotropy subgroup is

G (v , div v) =

∫
M

|v |2 dµ+
1

4

∫
M

| div v |2 dµ . (20)

Geodesics for M = S1 is the Camassa-Holm equation 1981/1993.

• Model for waves in shallow water.

• Completely integrable system (bi-Hamiltonian).

• Exhibits particular solutions named as peakons. (geodesics as
collective Hamiltonian).

• Blow-up of solutions which gives a model for wave breaking.



Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

The isotropy subgroup for unbalanced optimal transport

The induced metric on the isotropy subgroup is

G (v , div v) =

∫
M

|v |2 dµ+
1

4

∫
M

| div v |2 dµ . (20)

Geodesics for M = S1 is the Camassa-Holm equation 1981/1993.

• Model for waves in shallow water.

• Completely integrable system (bi-Hamiltonian).

• Exhibits particular solutions named as peakons. (geodesics as
collective Hamiltonian).

• Blow-up of solutions which gives a model for wave breaking.



Motivations from medical imaging Optimal transport Link to fluid dynamics Back to geometric data processing

Consequences

1 Using Gauss-Codazzi formula, it generalizes a curvature formula by
Khesin et al. obtained on Diff(S1).

2 Smooth geodesics are length minimizing for a short enough time
under mild conditions (generalization of Brenier’s proof).

3 The Camassa-Holm equation as a particular case of incompressible
Euler.

4 A new polar factorization theorem.

5 Generalized solutions to Camassa-Holm equation.
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Results

Theorem
Let ϕ be the flow of a smooth solution to the Camassa-Holm equation

then Ψ(θ, r)
def.
= (ϕ(θ),

√
Jac(ϕ(θ))r) is the flow of a solution to the

incompressible Euler equation for the density 1
r4 r dr dθ.

Case where M = S1, M(ϕ) = [(θ, r) 7→ r
√
∂xϕ(θ)e iϕ(θ)] then the CH

equation is{
∂tu − 1

4∂txxu u + 3∂xu u − 1
2∂xxu ∂xu − 1

4∂xxxu u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .
(21)

The Euler equation on the cone, C(M) = R2 \ {0} for the density
ρ = 1

r4 Leb is {
v̇ +∇vv = −∇p ,

∇ · (ρv) = 0 .
(22)

where v(θ, r)
def.
=
(
u(θ), r2∂xu(θ)

)
.
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Where to apply these efficient algorithms ?

Variational inverse problems

J (φ) = R(φ)︸ ︷︷ ︸
Regularization

+
1

2σ2
S(φ.A,B)2︸ ︷︷ ︸

similarity measure

. (23)

Mild constraints on S:

• Fast to evaluate

• Differentiable

• Convex

Examples: SSD, normalized cross correlation, LCC.

• Locality/Semi-locality.

Entropic Wasserstein is smooth and convex.
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A new divergence on probability measures

Recall that for ε > 0, define

OTε(α, β)
def.
= min
π1=α,π2=β

∫
X 2

C dπ + εKL(π|α⊗ β) (24)

where KL(π|α⊗ β)
def.
=

∫
X 2

log
dπ

dαdβ
dπ .

A possible solution, (Feydy et al.)

The Sinkhorn divergence:

Sε(α, β)
def.
= OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β) (25)

is non-negative, symmetric and convex in each variable.
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Test on fiber bundle

Figure – Registration with kernel metrics
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Test on fiber bundle

Figure – Registration with entropic optimal transport
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With different scales

Figure – Registration with kernel metrics
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With different scales

Figure – Registration with entropic optimal transport
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