

Labex Bézout meeting CEA LIST

Reconstructing digital models of buildings and cities in the IMAGINE group

Renaud Marlet (LIGM/ENPC) 3/12/2015

Overview

- Motivation
- Background in the IMAGINE group
- Overview of recent results
- Perspectives

(Semantized) 3D models for cities

© CSTB, Acute3D

Semantized 3D models for buildings

Building Information Model (BIM)

- Planing, bidding
 - accurate, reliable evaluation of costs and performance
 - energy consumption, acoustics, lighting, security, regulations...
 - simulation, optimization

- Organizing
 - collision detection, coordination...

Semantized 3D models for buildings (BIM)

- Virtual presentation
 - decision-makers, customers, population

- Monitoring
 - augmented reality at construction site
 - progress/conformity analysis

Renovation market: High stakes for energy savings

Housing = largest energy consumer in France

• Housing stock = mostly old buildings

 RT 2012 (5th thermal regulations) : new buildings only 300,000/year = 1% i impact in 50 years unless renovations

From laser scans to semantized 3D models

From pictures to semantized 3D models

3D reconstruction from images

3D reconstruction from images

Performance on international benchmarks: 3D reconstruction

11

Vu et al., CVPR 2009

- Best results on Strecha et al.'s benchmarks
 - most complete & most accurate models (CVPR 2009)

Transfer to startup company Acute3D

- 2011: creation
 - 2 researchers from IMAGINE (R. Keriven, J.-Ph. Pons)
 - 25 man.months of research
 - major contract with Autodesk
- 2015: buyout
 - 10 employees
 - >2M€ sales/year, 90% abroad (China, Japan...)
 - bought by Bentley Systems

Remaining issues

incomplete data (access difficult, inefficient, expensive...)

camera: flexible, but not accurate, not robust (low texture, ambiguity...)

laser: accurate, but little flexibility

geometry only, semantics missing

heterogeneous data (street/air, in/outside, laser+photo)

Adaptive Structure from Motion with a contrario model estimation

- Parameterless, adaptive SfM
 - automatic in/outlier thresholds (whole pipeline: + E, pose)
 - Heltmoltz principle: structure = unlikely coincidence

outliers among matches

outlier thresholding

Moulon et al., ACCV 2012

∎ penM∨G

Performance on international benchmarks: Calibration & 3D reconstruction

• Winner PRoVisG MARS 3D Challenge (2011)

Match selection and refinement for highly accurate 2-view Structure from Motion

• Fewer data with higher accuracy ? Or more data with less accuracy?

different choices of inliers

Liu et al., ECCV 2014 (oral)

Dataset		Stre	echa e	t al. [23]			D	TU ro	bot [1]	
$e_R (\text{deg} \times 10^{-2})$	raw	MS	MR	MR+MS	gain	raw	MS	MR	MR+MS	gain
RANSAC	16.4	9.52	10.3	8.87	1.9	26.5	22.3	21.5	21.3	1.2
MSAC	14.1	9.53	8.86	8.43	1.7	21.3	21.7	20.4	20.1	1.1
LO-RANSAC	16.4	9.54	10.3	8.97	1.8	26.8	22.2	21.5	21.3	1.3
MLESAC	15.8	7.81	9.50	7.76	2.0	21.8	22.6	20.8	20.2	1.1
ORSA	12.2	7.24	6.48	6.60	1.9	21.9	21.7	20.8	20.3	1.1
$e_t (deg)$	raw	MS	MR	MR+MS	gain	raw	MS	MR	MR+MS	gain
RANSAC	1.85	1.09	1.23	1.04	1.8	3.83	2.12	1.81	1.02	3.7
MSAC	1.59	1.08	1.03	0.96	1.6	1.27	1.03	0.93	0.70	1.8
LO-RANSAC	1.83	1.10	1.21	1.05	1.7	3.89	2.14	1.76	1.02	3.8
MLESAC	2.16	0.95	1.09	0.87	2.5	2.02	1.34	1.23	0.77	2.6
ORSA	1.38	0.81	0.68	0.74	1.9	1.22	0.88	0.66	0.66	1.8

Global fusion of relative motions for robust, accurate and scalable Structure from Motion

• Incremental SfM: drifts

- Moulon et al., ICCV 2013
- Global SfM: error smoothed over whole image graph
 - improved rejection of rotation outliers
 - a contrario trifocal estimation for translation (LP)
 - global registration of translations (LP)

4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	Scene FountainH EntryP10 HerzJesus
Bundler vs GlobalSfM	HerzJesus CastleP19
	Continuit

			Accu	iracy (n	nm)				I	Running times (s)							
		Ours	Bundler	VSfM	Olsson	Arie	Ours	OursP	Bundler	VSfM	Olsson	Ratio	Ratio				
	Scene		[31]	[35]	[25]	[3]			[31]	[35]	[25]	[25]/Ours	[25]/OursP				
3 7 7	FountainP11	2.5	7.0	7.6	2.2	4.8	12	5	36	3	133	11.1	26				
	EntryP10	5.9	55.1	63.0	6.9	N.A.	16	5	16	3	88	5.5	17				
	HerzJesusP8	3.5	16.4	19.3	3.9	N.A.	6	2	10	2	34	5.6	17				
	HerzJesusP25	5.3	21.5	22.4	5.7	7.8	47	10	100	12	221	4.7	22				
	CastleP19	25.6	344	258	76.2	N.A.	20	6	78	9	99	4.9	16				
	CastleP30	21.9	300	522	66.8	N.A.	55	14	300	18	317	5.7	22				

Robust and accurate camera pose estimation with lines and/or points

- SfM failure: little texture, single plane
 - → estimate pose from line segments
 - robust: 2 pairs of (matched) parallel lines
 - no Manhattan-world assumption
 - parameterless (a contrario thresholding)
 - \oplus points if available

	Dataset	Herz-Jesu	Castle	Herz-Jesu	Castle	Fountain	Office	Building	Car
Method		P8	P30	P25	P18	P11	P8	P6	P4
Best VP	e_R	6.11	3.23	4.74	0.81	0.26	1.84	18.35	21.12
5 points [2]	e_R	0.01	0.01	0.02	0.01	0	5.23	0.15	0.15
J-points [2]	e_t	0.22	0.12	0.2	0.1	0.12	15.22	0.39	0.3
1 points	e_R	2.15	0.06	1.39	0.62	0	7.73	0.19	8.46
4-points	e_t	11.78	0.31	9.98	0.14	0.15	22.68	0.41	28.41
3-lines [1]	e_R	3.86	0.43	0.8	0.47	0.28	1.04	7.12	11.73
(no LM)	e_t	20.26	22.86	23.2	18.19	2.74	15.3	57.18	32.3
2 lines SIET	e_R	4.16	0.07	0.36	0.19	0.01	2.68	3.49	7.93
3-1111es + 51F1	e_t	4.89	0.47	1.95	0.52	0.24	5.57	11.23	25.33
2x2 lines	e_R	4.04	0.17	0.72	0.21	0.06	0.64	0.51	1.16
ZXZ-IIIIes	e_t	8.07	0.81	3.98	1.25	0.56	3.87	2.45	16.06
mixed	e_R	0.77	0.17	0.71	0.76	0.1	0.55	0.78	0.23
inixed	e_t	8.37	0.8	4.1	5.07	0.62	3.82	0.56	0.67
AC mixed	e_R	0.01	0.01	0.02	0.01	0	0.57	0.12	0.19
AC-IIIXeu	e_t	0.23	0.12	0.21	0.1	0.13	2.54	0.43	0.27

Piecewise-planar 3D reconstruction with edge and corner regularization

- Watertight polygonal mesh, from laser scan
 - detected planes → 3D arrangement
 3D cell labeling: empty or full
 - completion of hidden area (ghost planes)
 - robustness to sampling anisotropy
 - insensitivity to plane insertion order

Boulch et al..

SGP/CGF 2014

Piecewise-planar 3D reconstruction with edge and corner regularization

- Watertight piecewise-planar polygonal mesh
 - regularization: area, edge length, number of corners
 - 8th-order potentials → mixed integer programming problem

edge+corner regularization

corner regularization

area regularization

Boulch et al..

SGP/CGF 2014

High-level bottom-up cues for top-down parsing of facade images

 Top-down parser with reinforcement learning: use of higher-level cues

RL parser = Markov decision process:

- agent constructing a derivation tree
- learning of policy function π(s,a):
 derivation choice a in state s

•
$$\pi(s,a) = (1-\varepsilon) \,\delta(a,a^*) + \varepsilon P(a|s)$$

Ok et al., 3DIMPVT 2012

Learning grammars for architecture-specific facade parsing

 $\xrightarrow{a_1}_{p_1} \mathbf{Y} \mathbf{A}_1$ $\xrightarrow{a_3}_{p_3} \mathbf{bC}_1$

 $\mathbf{X} \xrightarrow{a_1}_{p_1} \mathbf{Y} \mathbf{A}_{c,1}$ $\mathbf{U} \xrightarrow{a_2}_{q_1} \mathbf{V} \mathbf{A}_{c,1}$ $\mathbf{A}_{c,1} \xrightarrow{a_3}_{\{p_3,q_3\}} \mathbf{bC}_{c,1}$ $\mathbf{C}_{c,1} \xrightarrow{a_4} \{p_4,q_4\} \mathbf{D}_{c,1} \mathbf{A}_{c,2}$

10³ # of rules

		DARWIN unaries									State	of art				
104	80,				Gra	mmar i	nduced	from 9	¹ _{gen}	Grammar induced from \mathcal{G}^2_{gen}				\mathcal{G}_{gen}^2	(no grammar)	
$ \begin{array}{c} - \mathcal{G}_{gt} \\ - \mathcal{G}_{gt} \\ - \mathcal{G}_{st} \\ - \mathcal{G}_{st} \\ - \mathcal{G}_{st} \end{array} $	ECP2011		[62]	[41]	[69] ¹	[69] ²	$\mathcal{G}_{\mathrm{gt}}$	$\mathcal{G}_{\mathrm{st}}$	\mathcal{G}_{cl}	[69] ¹	[69] ²	\mathcal{G}_{gt}	$\mathcal{G}_{\mathrm{st}}$	\mathcal{G}_{c1}	[40]	[12]
10 ³ - [63] ²	acy	Door	47	50	20	26	19	41	52	49	54	48	57	62	60	79
	100 · · · · · · · · · · · · · · · · · ·	Shop	88	81	84	85	79	85	86	87	89	88	90	94	86	94
	8 50	Balcony	58	49	30	42	24	51	55	58	69	66	78	84	71	91
102		Window	62	66	24	48	26	58	64	52	59	56	67	72	69	85
		Wall	82	80	74	78	71	78	83	79	83	76	85	89	93	90
for the second s	$-[63]^1$	Sky	95	91	99	97	95	92	92	99	96	96	96	98	97	97
101/	30	Roof	66	71	33	34	29	63	67	52	58	54	73	79	73	90
0 20 40 60 80 100 120 # of facades	0 10 20 30 40 Time (in seconds)	Average	71.1	69.7	51.9	58.6	49.1	66.9	71.3	67.9	72.6	66.5	78.1	82.5	78.4	89.4
coolobility (convergence cheed	Overall	74.7	74.8	62.9	69.3	59.9	73.1	76.2	74.2	78.6	71.8	82.6	86.9	85.1	90.8
Scalability	convergence speed	IoU	-	-	36.5	42.1	34.3	55.4	57.6	54.8	57.3	52.3	67.7	71.8	-	-

Gadde et al., IJCV 2016 (rev)

Learning grammars for architecture-specific facade parsing

• Specificity of learned grammars

Haussmannian facade parsed with Art déco grammar

	GAA	\mathcal{G}_{AH}	\mathcal{G}_{HA}	G _{нн}
Door	59	56	57	62
Shop	88	86	83	94
Balcony	63	51	54	84
Window	66	56	48	72
Wall	84	71	76	89
Sky	92	82	92	98
Roof	58	68	51	79
Average	72.9	67.1	65.9	82.5
Overall	78.8	71.9	70.8	87.0
IoU	59.4	55.8	57.6	71.8

Art déco facade parsed with Haussmannian grammar

Gadde et al., IJCV 2016 (rev)

A MRF shape prior for facade parsing with occlusions

)
ſ		1	
A		b	
B₹	1 C	d	

$\mathcal{R} = \{A, B\}, \mathcal{C} = \{I, II\},$
$\Psi(A, I) = $ window,
$\Psi(A, II) = $ wall,
$\Psi(B,I) = $ wall,
$\Psi(B,II) = \text{wall},$
$\mathcal{V} = \{(A,B),(B,A)\},$
$\mathcal{H} = \{(I,II),(II,I)\}.$

	h	oriz.	neig	ghbo	ors	vert. neighbors							
(A,I) = a,	hг	a	b	с	d	v۲	a	b	С	d			
$(A \Pi) - b$	a	+	+	_	_	a	+	_	+	_			
$(\Pi,\Pi) = 0,$	b	+	+	—	—	b	-	+	-	+			
(B,I) = c,	С	-	-	+	+	C	+	-	+	-			
(B,II)=d.	d	-	-	+	+	d	-	+	_	+			

user-defined prior – enables 2D alignment

•	h	hΓ'	a	b	С	d	v٢	a	b	С	d
a	U	a	+	+	-	-	a	+	-	-	-
		b	-	+	_	-	b	-	+	_	-
C	d	С	-	-	+	+	С	+	-	+	_
		d	-	-	-	+	d	-	+	-	+

(a) A non-repeating pattern with straight, axis-aligned boundaries.

- 1-	hr	a	b	с	d	vr	a	b	С	d
ab	a	+	+	+	-	a	+	+	_	_
M	b	-	+	_	+	b	+	+	_	_
c / d	С	+	_	+	+	С	+	_	+	+
	d	-	+	_	+	d	-	+	+	+

(b) A non-repeating pattern with winding, axis-driven boundaries.

	1	hr≀	a	b	С	d	vr	a	b	с	d
a	b	a	+	+	+		a	+	_	_	_
		b	-	+	_	_	b	-	+	_	_
C	d	С	-	-	+	+	с	+	-	+	-
		d	-	-	-	+	d	-	+	-	+

(c) A non-repeating pattern on grid with monotonic boundaries.

allows irregular shapes

efficient inference (dual decomposition)

state-of-the-art

curacy	RN	RNN unaries			TextonBoost unaries			
	raw	[7]	Ours	raw	[1]	[5]	Ours	
roof	70	74	78	89	90	91	91	
shop	79	93	90	95	94	95	97	
balcony	74	70	76	90	91	90	91	
sky	91	97	94	94	97	96	97	
window	62	75	67	86	85	85	87	
door	43	67	44	77	79	74	79	
wall	92	88	93	90	90	91	90	
pixel accur	. 82.6	84.2	86.2	90.1	90.8	90.8	91.3	

	Graz50				ArtDeco			
	[9]	[5]	Ours		raw ¹	raw ²	ours ³	ours ⁴
sky	91	93	93	roof	82	82	81	82
window	60	82	84	shop	96	95	97	97
door	41	50	60	balcony	88	87	82	87
wall	84	96	96	sky	97	97	98	97
				window	87	85	82	82
				door	64	63	57	57
				wall	77	87	89	88
				vegetation	_	90	-	90
pix. acc.	78.0	91.8	92.5	lo ^r	83.5	88.4	88.8	88.8

		eTri	ms	
	raw	[7]-L3	[1]	Ours
ouilding	88	87	91	92
ar	69	69	70	70
loor	25	19	18	20
avement	34	34	33	33
oad	56	56	57	56
ky	94	94	97	96
regetation	89	88	90	91
window	71	79	71	70
oixel accur.	81.9	81.6	83.8	83.5

A MRF shape prior for facade parsing with occlusions

Semantizing complex 3D scenes using constrained attribute grammars

Boulch et al.,
 Boulch et al.,
 Boulch et al.,
 SGP/CGF 2013

holdente	
polygon19	
polygon16	
(antimatiz) a contaction	riserBase4
polygon18 • nosingEleme	Nt9 OPE4 riserOptNose4
polygon3	
(and a set of the set	tread0
buygers	riseroaseu
polygon2 nosingEleme	
polygon1 nosingEleme	stairwayO
(Iteration	
portformer	(step1) OPE5
polygon8	riserBasel riserOptNosel riser1
polygon9 - nosingEleme	
notional and notional large	nd //
polygon7	treed2 + step2
polygon4	riserBase2 riserOptNose2 riser2
noiveanti e novinaFleme	M2 (DPF2)
Contraction of the second seco	
polygon5 - nosingEleme	15
polygon15	treed3 • step3
polygon12	riserBase3 + riserOptNose3 + riser3
polygon13 - nosingEleme	ntő OPE3
(ashunald) a conjuntion	

 $\langle horizontal(p), p.breadth <= 2.0 \rangle$ tread t polygon p \rightarrow $\langle vertical(p.breadthVector), 0.05 \leq p.breadth, p.breadth \leq 0.25 \rangle$ riserBase b polygon p \rightarrow (horizontal(p.lengthVector), p.breadth <= 0.05)nosingElement e polygon p \rightarrow $\langle \mathsf{edgeAdj}(b,n), \mathsf{above}(b,n) \rangle$ riserBase b, maxseq(nosingElement, edgeAdj) n riser r \rightarrow $\langle edgeAdj(r,t), above(r,t) \rangle$ riser r, tread t step s \rightarrow maxseq(step, edgeAdj) s, optional riser r $\langle edgeAdj(s,r), above(s,r) \rangle$ stairway w \rightarrow

Semantizing complex 3D scenes using constrained attribute grammars

Boulch et al.,
 Boulch et al.,
 Boulch et al.,
 SGP/CGF 2013

Projects

- IMAGINE: joint project ENPC-CSTB
 - IMage, Apprentissage et Géométrle pour la Numérisation de l'Environnement
- Chaire Bouygues "Bâtir durable et innover"
 - maquettes numériques de bâtiments existants
- ANR Semapolis
 - semantic visual analysis and
 3D reconstruction of urban environments

Perspectives

• Scan-to-BIM, picture-to-BIM, picture-to-CityGML...

Deep learning

- e.g., detection of furniture
- 2015: rank 1 on PASCAL VOC2012 challenge Gidaris et al., ICCV 2015
- 2+ researchers, 7 PhD students (5 main topic + 2 auxiliary)
- Co-innovation lab
 - robotics for
 civil engineering, ...

PASCAL2