Majorize-Minimize Memory Gradient Methods for Data Processing

Jean-Christophe Pesquet

Laboratoire d'Informatique Gaspard Monge - CNRS Univ. Paris-Est Marne-Ia-Vallée, France

3 Dec. 2015

EA meeting

イヨト・イヨト

In collaboration with

A. Florescu

E. Chouzenoux

P. Ciuciu

S. Ciochina

< □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Proposed optimization method
 - Preliminaries
 - Proposed algorithm
 - Convergence result

Application to CS-PMRI

- Model
- Simulation results

4 Online algorithm

5 Conclusion

Outline

Introduction

Proposed optimization method

- Preliminaries
- Proposed algorithm
- Convergence result

3 Application to CS-PMRI

- Model
- Simulation results

4 Online algorithm

Conclusion

General context

• We observe data $m{y} \in \mathbb{C}^Q$, related to the original image $\overline{m{x}} \in \mathbb{C}^N$ through:

$$oldsymbol{y} = oldsymbol{H}\overline{oldsymbol{x}} + oldsymbol{w}, \qquad oldsymbol{H} \in \mathbb{C}^{Q imes N}$$

• Objective: Restore the unknown original image \overline{x} from H and y.

Examples of complex-valued inverse problems:

- \rightsquigarrow Spectral analysis
- → Nuclear Magnetic Resonance
- $\rightsquigarrow \ \ Mass \ Spectroscopy$
- → Magnetic Resonance Imaging

General context

Penalized optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{C}^N} \quad (F(\boldsymbol{x}) = \Phi(\boldsymbol{H}\boldsymbol{x} - \boldsymbol{y}) + \Psi(\boldsymbol{x})), \tag{1}$$

where

 $\Phi~: \mathbb{C}^Q \to \mathbb{R} \rightsquigarrow$ Data fidelity term, related to noise model

 $\Psi \ : \mathbb{C}^N \to \mathbb{R} \rightsquigarrow$ Regularization term, related to a priori assumptions

Considered penalization model:

$$\Psi(\boldsymbol{x}) = \sum_{s=1}^{S} \psi_s(|\boldsymbol{v}_s^{\mathrm{H}}\boldsymbol{x} - c_s|) + \frac{\varepsilon}{2} \|\boldsymbol{x}\|^2,$$

• For every
$$s \in \{1, \dots, S\}$$
, $\psi_s \colon \mathbb{R} \to \mathbb{R}$, $v_s \in \mathbb{C}^N$, $c_s \in \mathbb{C}$,
• $\varepsilon \in [0, +\infty)$.

A E > A E >

Examples of regularization functions

 ℓ_2 - ℓ_1 functions: Asymptotically linear with a quadratic behavior near 0. *Example:* $(\forall t \in \mathbb{R}), \ \psi_s(t) = \lambda_s(\sqrt{\delta_s^2 + t^2} - \delta_s), \ \lambda_s > 0, \ \delta_s > 0$ Limit case: When $\delta_s \to 0, \ \psi_s(t) = \lambda_s |t| \ (\ell_1 \text{ penalty}).$

 ℓ_2 - ℓ_1 functions: Asymptotically linear with a quadratic behavior near 0.

 ℓ_2 - ℓ_0 functions: Asymptotically constant with a quadratic behavior near 0. *Example:* $(\forall t \in \mathbb{R}), \ \psi_s(t) = \lambda_s (2\delta_s^2 + t^2)^{-1}t^2, \ \lambda_s > 0, \ \delta_s > 0$ Limit case: When $\delta_s \to 0, \ \psi_s(t) \to 0$ if $t = 0, \ \lambda_s$ otherwise (ℓ_0 penalty).

Examples of functions $(\psi_s)_{1 \leq s \leq S}$

	$\lambda_s^{-1}\psi_s(t)$	Туре	Name			
Convex	$ t - \delta_s \log(t /\delta_s + 1)$	$\ell_2 - \ell_1$				
	$\left\{egin{array}{ll} t^2 & ext{if} \left t ight < \delta_s \ 2\delta_s \left t ight - \delta_s^2 & ext{otherwise} \end{array} ight.$	$\ell_2 - \ell_1$	Huber			
	$\log(\cosh(t))$	$\ell_2 - \ell_1$	Green			
	$(1+t^2/\delta_s^2)^{\kappa_s/2} - 1$	$\ell_2 - \ell_{\kappa_s}$				
Nonconvex	$1 - \exp(-t^2/(2\delta_s^2))$	$\ell_2 - \ell_0$	Welsch			
	$t^2/(2\delta_s^2+t^2)$	$\ell_2 - \ell_0$	Geman			
			-McClure			
	$\begin{cases} 1 - (1 - t^2/(6\delta_s^2))^3 & \text{if } t \leqslant \sqrt{6}\delta_s \\ 1 & \text{otherwise} \end{cases}$	$\ell_2 - \ell_0$	Tukey biweight			
	$\tanh(t^2/(2\delta_s^2))$	$\ell_2 - \ell_0$	Hyberbolic tangent			
	$\log(1+t^2/\delta_s^2)$	$\ell_2 - \log$	Cauchy			
	$1 - \exp(1 - (1 + t^2/(2\delta_s^2))^{\kappa_s/2})$	$\ell_2-\ell_{\kappa_S}-\ell_0$	Chouzenoux			
$(\lambda_s, \delta_s) \in]0, +\infty[^2, \kappa_s \in [1, 2]$						

Examples of functions $(\psi_s)_{1 \leq s \leq S}$

 $\psi_s(t) = (1 + \frac{t^2}{\delta^2})^{1/2} - 1, \ \psi_s(t) = \log\left(1 + \frac{t^2}{\delta^2}\right), \ \psi_s(t) = 1 - \exp(-\frac{t^2}{2\delta^2}).$

(4 回 ト 4 ヨ ト 4 ヨ ト

Outline

Introduction

Proposed optimization method

- Preliminaries
- Proposed algorithm
- Convergence result

3 Application to CS-PMRI

- Model
- Simulation results

4 Online algorithm

Conclusion

Preliminaries

Notation:

- \blacktriangleright For every vector $oldsymbol{x} \in \mathbb{C}^N$,
 - $x_R \in \mathbb{R}^N$ (resp. $x_I \in \mathbb{R}^N$) denotes the vector of real (resp. imaginary) parts of the components of x.
 - $\widetilde{x} \in \mathbb{R}^{2N}$ denotes the "concatenated" vector $\widetilde{x} = [x_R^\top \ x_I^\top]^\top$ where $(\cdot)^\top$ is the transpose operation.
- ▶ If F is a function from \mathbb{C}^N to \mathbb{C} , we define \widetilde{F} the function of real variables associated with F, i.e. $(\forall x \in \mathbb{C}^N) \ \widetilde{F}(\widetilde{x}) = F(x)$.

Preliminaries

Notation:

- \blacktriangleright For every vector $oldsymbol{x} \in \mathbb{C}^N$,
 - $x_R \in \mathbb{R}^N$ (resp. $x_I \in \mathbb{R}^N$) denotes the vector of real (resp. imaginary) parts of the components of x.
 - $\widetilde{x} \in \mathbb{R}^{2N}$ denotes the "concatenated" vector $\widetilde{x} = [x_R^\top \ x_I^\top]^\top$ where $(\cdot)^\top$ is the transpose operation.
- ▶ If F is a function from \mathbb{C}^N to \mathbb{C} , we define \widetilde{F} the function of real variables associated with F, i.e. $(\forall x \in \mathbb{C}^N) \ \widetilde{F}(\widetilde{x}) = F(x)$.

Complex-valued differential calculus:

According to Wirtinger's calculus, the derivative of F with respect to the conjugate of its variable is formally defined as

$$(orall oldsymbol{x} \in \mathbb{C}^N) \qquad
abla F(oldsymbol{x}) = rac{1}{2} \left(rac{\partial \widetilde{F}(\widetilde{oldsymbol{x}})}{\partial oldsymbol{x}_R} + \imath rac{\partial \widetilde{F}(\widetilde{oldsymbol{x}})}{\partial oldsymbol{x}_I}
ight)$$

Assumptions

$$F(m{x}) = \Phi(m{H}m{x} - m{y}) + \sum_{s=1}^{S} \psi_s(|m{v}_s^{
m H}m{x} - c_s|) + rac{arepsilon}{2} \|m{x}\|^2$$

Assumption 1:

(i) $\widetilde{\Phi}$ is differentiable.

(ii) For every $s \in \{1, \ldots, S\}$, ψ_s is differentiable and $\lim_{\substack{t \to 0 \\ t \neq 0}} \dot{\psi}_s(t)/t \in \mathbb{R}$.

Assumption 2: One of the following conditions holds:

- Φ and $(\psi_s)_{1 \leqslant s \leqslant S}$ are lower bounded functions and $\varepsilon > 0$.
- (i) Φ is coercive (i.e. $\lim_{\|\boldsymbol{z}\| \to +\infty} \Phi(\boldsymbol{z}) = +\infty$).
 - (ii) $(\psi_s)_{1\leqslant s\leqslant S}$ are lower bounded functions.
 - (iii) H is injective.
- (i) Φ is coercive.
 - (ii) For every $s \in \{1, \ldots, S\}$, ψ_s is coercive.

(iii) Ker $\boldsymbol{H} \cap (\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_S\})^{\perp} = \{\boldsymbol{0}\}$

Properties

Complex-valued derivative of ${\boldsymbol{F}}$

Under Assumption 1, for all $\boldsymbol{x} \in \mathbb{C}^N$,

$$abla F(\boldsymbol{x}) = \boldsymbol{H}^{\mathrm{H}} \nabla \Phi(\boldsymbol{H}\boldsymbol{x} - \boldsymbol{y}) + \frac{1}{2} \boldsymbol{V} \operatorname{Diag}(\boldsymbol{b}(\boldsymbol{x})) (\boldsymbol{V}^{\mathrm{H}}\boldsymbol{x} - \boldsymbol{c}) + \frac{\varepsilon}{2} \boldsymbol{x},$$

with

•
$$V = [v_1, \dots, v_S] \in \mathbb{C}^{N \times S}$$
,
• $b(x) = (\omega_s(|v_s^{\mathrm{H}}x - c_s|))_{1 \leq s \leq S}$,
• $(\forall s \in \{1, \dots, S\})(\forall a \in \mathbb{R}) \ \omega_s(a) = \begin{cases} \frac{\dot{\psi}_s(a)}{a} & \text{if } a \neq 0\\ \lim_{t \to 0} \dot{\psi}_s(t)/t & \text{otherwise.} \end{cases}$

イロト イポト イヨト イヨト

э

12 / 34

3-12-2015

Properties

Complex-valued derivative of F

Under Assumption 1, for all $\boldsymbol{x} \in \mathbb{C}^N$,

$$abla F(\boldsymbol{x}) = \boldsymbol{H}^{\mathrm{H}} \nabla \Phi(\boldsymbol{H}\boldsymbol{x} - \boldsymbol{y}) + \frac{1}{2} \boldsymbol{V} \operatorname{Diag}(\boldsymbol{b}(\boldsymbol{x})) (\boldsymbol{V}^{\mathrm{H}}\boldsymbol{x} - \boldsymbol{c}) + \frac{\varepsilon}{2} \boldsymbol{x},$$

with

•
$$V = [v_1, \dots, v_S] \in \mathbb{C}^{N \times S}$$
,
• $b(x) = (\omega_s(|v_s^{\mathrm{H}}x - c_s|))_{1 \leq s \leq S}$,
• $(\forall s \in \{1, \dots, S\})(\forall a \in \mathbb{R}) \ \omega_s(a) = \begin{cases} \frac{\dot{\psi}_s(a)}{a} & \text{if } a \neq 0\\ \lim_{t \to 0} \dot{\psi}_s(t)/t & \text{otherwise.} \end{cases}$

Existence of minimizers

Under Assumptions 1 and 2, Problem (1) has a solution.

CEA meeting

3-12-2015

12 / 34

Majorize-Minimize principle [Hunter04]

Objective: Find $\hat{x} \in \operatorname{Arg\,min} F$

For all x', let $\Theta(., x')$ a *tangent majorant* of F at x' i.e.,

$$\begin{split} \Theta(\boldsymbol{x}, \boldsymbol{x}') &\geq F(\boldsymbol{x}) \quad (\forall \boldsymbol{x}), \\ \Theta(\boldsymbol{x}', \boldsymbol{x}') &= F(\boldsymbol{x}') \end{split}$$

Quadratic majorization

Assumption 3:

(i) Φ has a $\beta\text{-Lipschitzian}$ derivative with $\beta\in(0,+\infty),$ i.e.

$$(orall oldsymbol{z} \in \mathbb{C}^Q)(orall oldsymbol{z}' \in \mathbb{C}^Q) \qquad \|
abla \Phi(oldsymbol{z}) -
abla \Phi(oldsymbol{z}')\| \leqslant eta \|oldsymbol{z} - oldsymbol{z}'\|.$$

(ii) For every $s \in \{1, \dots, S\}$, $\psi_s(\sqrt{.})$ is concave on $[0, +\infty)$.

(iii) There exists
$$\overline{\omega} \in [0, +\infty)$$
 such that $(\forall s \in \{1, \dots, S\}) \ (\forall t \in (0, +\infty)) \ 0 \leq \omega_s(t) \leq \overline{\omega}.$

Proposition

If, for every $\boldsymbol{x}' \in \mathbb{C}^N$, $\boldsymbol{A}(\boldsymbol{x}') = \mu \boldsymbol{H}^{\mathrm{H}} \boldsymbol{H} + \boldsymbol{V} \operatorname{Diag} (\boldsymbol{b}(\boldsymbol{x}')) \boldsymbol{V}^{\mathrm{H}} + \varepsilon \boldsymbol{I}_N$ with $\mu \in [2\beta, +\infty)$, then

$$\Theta(\boldsymbol{x}, \boldsymbol{x}') = F(\boldsymbol{x}') + 2\operatorname{Re}\left\{\nabla F(\boldsymbol{x}')^{\mathrm{H}}(\boldsymbol{x} - \boldsymbol{x}')\right\} + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}')^{\mathrm{H}}\boldsymbol{A}(\boldsymbol{x}')(\boldsymbol{x} - \boldsymbol{x}')$$

is a quadratic tangent majorant of F at x'.

MM Subspace algorithm:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{u}_k \qquad (\forall k \ge 0)$$

< □ > < □ > < □ > < □ > < □ >

MM Subspace algorithm:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{u}_k \qquad (\forall k \ge 0)$$

• $D_k \in \mathbb{C}^{N \times M}$: matrix of M directions

Example: Memory gradient $D_k = [-\nabla F(x_k), x_k - x_{k-1}]$

イロト イポト イヨト イヨト 二日

MM Subspace algorithm:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{u}_k \qquad (\forall k \ge 0)$$

- $\boldsymbol{D}_k \in \mathbb{C}^{N imes M}$: matrix of M directions
- $u_k \in \mathbb{C}^M$: multivariate stepsize resulting from MM minimization of $f_k(u) : u \mapsto F(x_k + D_k u)$

MM Subspace algorithm:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{u}_k \qquad (\forall k \ge 0)$$

- $\boldsymbol{D}_k \in \mathbb{C}^{N imes M}$: matrix of M directions
- $u_k \in \mathbb{C}^M$: multivariate stepsize resulting from MM minimization of $f_k(u) : u \mapsto F(x_k + D_k u)$

MM minimization in the subspace:

$$\begin{cases} \boldsymbol{u}_k^0 &= \boldsymbol{0}, \\ \boldsymbol{u}_k^j &\in \operatorname{Arg\,min}_{\boldsymbol{u}} \vartheta_k(\boldsymbol{u}, \boldsymbol{u}_k^{j-1}) \; (\forall j \in \{1, \dots J\}) \end{cases}$$

with, for all $u \in \mathbb{C}^M$, $\vartheta_k(u, u_k^j) = \Theta(x_k + D_k u, x_k + D_k u_k^j)$, quadratic tangent majorant of f_k at u_k^j with Hessian:

$$oldsymbol{B}_k^j = oldsymbol{D}_k^{\mathrm{H}}oldsymbol{A}(oldsymbol{x}_k + oldsymbol{D}_koldsymbol{u}_k^j)oldsymbol{D}_k$$

Complex-valued 3MG algorithm

$$\begin{aligned} \mathbf{x}_0 \in \mathbb{C}^N, \, \mathbf{x}_{-1} &= \mathbf{0} \\ \text{For all } k = 0, \dots \\ \mathbf{D}_k &= [-\nabla F(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x}_{k-1}] \\ \mathbf{u}_k^0 &= \mathbf{0}, \\ \text{For all } j = 1, \dots, J \\ \begin{bmatrix} \mathbf{B}_k^{j-1} &= \mathbf{D}_k^{\mathrm{H}} \mathbf{A}(\mathbf{x}_k + \mathbf{D}_k \mathbf{u}_k^{j-1}) \mathbf{D}_k, \\ \mathbf{u}_k^j &= \mathbf{u}_k^{j-1} - 2(\mathbf{B}_k^{j-1})^{\dagger} \mathbf{D}_k^{\mathrm{H}} \nabla F(\mathbf{x}_k + \mathbf{D}_k \mathbf{u}_k^{j-1}), \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \mathbf{D}_k \mathbf{u}_k^J. \end{aligned}$$

Complex-valued 3MG algorithm

$$\begin{split} & \mathbf{x}_{0} \in \mathbb{C}^{N}, \, \mathbf{x}_{-1} = \mathbf{0} \\ & \text{For all } k = 0, \dots \\ & \mathbf{D}_{k} = [-\nabla F(\mathbf{x}_{k}), \mathbf{x}_{k} - \mathbf{x}_{k-1}] \\ & \mathbf{u}_{k}^{0} = \mathbf{0}, \\ & \text{For all } j = 1, \dots, J \\ & \begin{bmatrix} \mathbf{B}_{k}^{j-1} = \mathbf{D}_{k}^{H} \mathbf{A}(\mathbf{x}_{k} + \mathbf{D}_{k} \mathbf{u}_{k}^{j-1}) \mathbf{D}_{k}, \\ & \mathbf{u}_{k}^{j} = \mathbf{u}_{k}^{j-1} - 2(\mathbf{B}_{k}^{j-1})^{\dagger} \, \mathbf{D}_{k}^{H} \nabla F(\mathbf{x}_{k} + \mathbf{D}_{k} \mathbf{u}_{k}^{j-1}), \\ & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \mathbf{D}_{k} \mathbf{u}_{k}^{J}. \end{split}$$

 \rightsquigarrow Equivalent to 3MG algorithm for minimizing real-valued function $\tilde{F},$ taking

$$\widetilde{oldsymbol{D}}_k = egin{bmatrix} oldsymbol{D}_{k,R} & -oldsymbol{D}_{k,I} \ oldsymbol{D}_{k,R} \end{bmatrix} \in \mathbb{R}^{2N imes 2M}$$

Convergence result

• Assumption 4: F satisfies the Kurdyka-Łojasiewicz inequality, i.e. for every $\hat{x} \in \mathbb{C}^N$ and every bounded neighborhood \mathbb{B} of \hat{x} , there exist constants $\kappa > 0$, $\zeta > 0$ and $\theta \in [0, 1)$ such that

$$\|\nabla F(\boldsymbol{x})\| \ge \kappa |F(\boldsymbol{x}) - F(\hat{\boldsymbol{x}})|^{\theta},$$

for every $\boldsymbol{x} \in \mathbb{B}$ such that $|F(\boldsymbol{x}) - F(\hat{\boldsymbol{x}})| \leqslant \zeta$.

< ≣ > < ≣ > 3-12-2015

17 / 34

Convergence result

Proposition

Assume that there exists $\alpha \in (0, +\infty)$ such that $(\forall x \in \mathbb{C}^N) A(x) - \alpha I_N$ is a positive semi-definite matrix. Then, under **Assumptions 1-4**, the 3MG algorithm generates a sequence $(x_k)_{k\in\mathbb{N}}$ converging to a critical point of F. Moreover, $(F(x_k))_{k\in\mathbb{N}}$ is a nonincreasing sequence and $(x_k)_{k\in\mathbb{N}}$ has a finite length in the sense that

$$\sum_{k=0}^{+\infty} \|oldsymbol{x}_{k+1} - oldsymbol{x}_k\| < +\infty.$$

Finally, there exists $\eta \in (0,+\infty)$ such that, if

 $F(\boldsymbol{x}_0) \leqslant \eta + \inf F,$

then $(\boldsymbol{x}_k)_{k\in\mathbb{N}}$ converges to a global solution to Problem (1).

Outline

1 Introduction

Proposed optimization method

- Preliminaries
- Proposed algorithm
- Convergence result

Application to CS-PMRI

- Model
- Simulation results

Online algorithm

Conclusion

Objective:

- Reduce the acquisition time
- Maintain good image quality

Principle:

- k-space subsampling
- Multiple receiver coils

Objective:

- Reduce the acquisition time
- Maintain good image quality

Principle:

- k-space subsampling
- Multiple receiver coils

Acquisition model:
$$(\forall \ell \in \{1, \dots, L\})$$
 $d_{\ell} = \Sigma F S_{\ell} \overline{\rho} + w_{\ell}$

Objective:

- Reduce the acquisition time
- Maintain good image quality

Principle:

- k-space subsampling
- Multiple receiver coils

Acquisition model: $(\forall \ell \in \{1, ..., L\})$ $d_{\ell} = \Sigma F S_{\ell} \overline{\rho} + w_{\ell}$ $\flat \forall \ell \in \{1, ..., L\}, S_{\ell} \in \mathbb{C}^{K \times K}$: diagonal sensitivity matrix,

Objective:

- Reduce the acquisition time
- Maintain good image quality

Principle:

- k-space subsampling
- Multiple receiver coils

Acquisition model: $(\forall \ell \in \{1, ..., L\})$ $d_{\ell} = \Sigma F S_{\ell} \overline{\rho} + w_{\ell}$ $\forall \ell \in \{1, ..., L\}, S_{\ell} \in \mathbb{C}^{K \times K}$: diagonal sensitivity matrix,

▶ $F \in \mathbb{C}^{K \times K}$: 2D discrete Fourier transform,

3-12-2015 20 / 34

Objective:

- Reduce the acquisition time
- Maintain good image quality

Principle:

- k-space subsampling
- Multiple receiver coils

Acquisition model: $(\forall \ell \in \{1, \dots, L\})$ $d_{\ell} = \sum F S_{\ell} \overline{\rho} + w_{\ell}$

- ▶ $\forall \ell \in \{1, ..., L\}$, $S_{\ell} \in \mathbb{C}^{K \times K}$: diagonal sensitivity matrix,
- ▶ $F \in \mathbb{C}^{K \times K}$: 2D discrete Fourier transform,
- $\Sigma \in \{0,1\}^{\lfloor \frac{K}{R} \rfloor \times K}$: subsampling matrix

Objective:

- Reduce the acquisition time
- Maintain good image quality

Principle:

- k-space subsampling
- Multiple receiver coils

Acquisition model: $(\forall \ell \in \{1, \dots, L\})$ $d_{\ell} = \Sigma F S_{\ell} \overline{\rho} + w_{\ell}$

- ▶ $\forall \ell \in \{1, \dots, L\}$, $S_{\ell} \in \mathbb{C}^{K \times K}$: diagonal sensitivity matrix,
- $F \in \mathbb{C}^{K \times K}$: 2D discrete Fourier transform,
- $\Sigma \in \{0,1\}^{\lfloor \frac{K}{R} \rfloor \times K}$: subsampling matrix
- ► $\forall \ell \in \{1, ..., L\}$, $w_{\ell} \in \mathbb{C}^{\lfloor \frac{K}{R} \rfloor}$: realization of circular complex Gaussian noise with zero-mean and covariance matrix Λ_{ℓ} .

Variational formulation

$$\underset{\boldsymbol{\rho} \in \mathbb{E}}{\text{minimize}} \quad \left(\sum_{\ell=1}^{L} \| \boldsymbol{\Sigma} \boldsymbol{F} \boldsymbol{S}_{\ell} \boldsymbol{\rho} - \boldsymbol{d}_{\ell} \|_{\boldsymbol{\Lambda}_{\ell}^{-1}}^{2} + \sum_{s=1}^{S} \psi_{s}(|\boldsymbol{f}_{s}^{\text{H}} \boldsymbol{\rho}|) \right)$$

CEA meeting

Variational formulation

$$\begin{split} & \underset{\boldsymbol{\rho} \in \mathbb{E}}{\text{minimize}} \quad \left(\sum_{\ell=1}^{L} \| \boldsymbol{\Sigma} \boldsymbol{F} \boldsymbol{S}_{\ell} \boldsymbol{\rho} - \boldsymbol{d}_{\ell} \|_{\boldsymbol{\Lambda}_{\ell}^{-1}}^{2} + \sum_{s=1}^{S} \psi_{s}(|\boldsymbol{f}_{s}^{\mathrm{H}} \boldsymbol{\rho}|) \right) \\ & \leadsto \quad \underset{\boldsymbol{x} \in \mathbb{C}^{N}}{\text{minimize}} \quad \left(\sum_{\ell=1}^{L} \| \boldsymbol{\Sigma} \boldsymbol{F} \boldsymbol{S}_{\ell} \boldsymbol{E} \boldsymbol{x} - \boldsymbol{d}_{\ell} \|_{\boldsymbol{\Lambda}_{\ell}^{-1}}^{2} + \sum_{s=1}^{S} \psi_{s}(|\boldsymbol{f}_{s}^{\mathrm{H}} \boldsymbol{E} \boldsymbol{x}|) + \frac{\varepsilon}{2} \| \boldsymbol{x} \|^{2} \right) \\ & \text{where} \quad \boldsymbol{E} \in \mathbb{C}^{K \times N} \text{ allows us to set the background pixels to zero.} \end{split}$$

Variational formulation

$$\begin{array}{l} \underset{\boldsymbol{\rho} \in \mathbb{E}}{\operatorname{minimize}} \quad \left(\sum_{\ell=1}^{L} \| \boldsymbol{\Sigma} \boldsymbol{F} \boldsymbol{S}_{\ell} \boldsymbol{\rho} - \boldsymbol{d}_{\ell} \|_{\boldsymbol{\Lambda}_{\ell}^{-1}}^{2} + \sum_{s=1}^{S} \psi_{s}(|\boldsymbol{f}_{s}^{\mathrm{H}} \boldsymbol{\rho}|) \right) \\ \stackrel{\leftrightarrow}{} \underset{\boldsymbol{x} \in \mathbb{C}^{N}}{\operatorname{minimize}} \quad \left(\sum_{\ell=1}^{L} \| \boldsymbol{\Sigma} \boldsymbol{F} \boldsymbol{S}_{\ell} \boldsymbol{E} \boldsymbol{x} - \boldsymbol{d}_{\ell} \|_{\boldsymbol{\Lambda}_{\ell}^{-1}}^{2} + \sum_{s=1}^{S} \psi_{s}(|\boldsymbol{f}_{s}^{\mathrm{H}} \boldsymbol{E} \boldsymbol{x}|) + \frac{\varepsilon}{2} \| \boldsymbol{x} \|^{2} \right) \\ \stackrel{\leftrightarrow}{} \underset{\boldsymbol{x} \in \mathbb{C}^{N}}{\operatorname{minimize}} \quad \left(\Phi(\boldsymbol{H} \boldsymbol{x} - \boldsymbol{y}) + \sum_{s=1}^{S} \psi_{s}(|\boldsymbol{v}_{s}^{\mathrm{H}} \boldsymbol{x} - \boldsymbol{c}_{s}|) + \frac{\varepsilon}{2} \| \boldsymbol{x} \|^{2} \right) \end{array}$$

with Φ squared Hermitian norm of \mathbb{C}^Q with $Q = L\lfloor K/R \rfloor$ and

•
$$\boldsymbol{H} = [\boldsymbol{H}_1^{\top}, \dots, \boldsymbol{H}_L^{\top}]^{\top}$$
, $(\forall \ell \in \{1, \dots, L\})$ $\boldsymbol{H}_{\ell} = \boldsymbol{\Lambda}_{\ell}^{-1/2} \boldsymbol{\Sigma} \boldsymbol{F} \boldsymbol{S}_{\ell} \boldsymbol{E}$
• $\boldsymbol{y} = [\boldsymbol{y}_1^{\top}, \dots, \boldsymbol{y}_L^{\top}]^{\top}$, $(\forall \ell \in \{1, \dots, L\})$ $\boldsymbol{y}_{\ell} = \boldsymbol{\Lambda}_{\ell}^{-1/2} \boldsymbol{d}_{\ell}$
• $(\boldsymbol{v}_s)_{1 \leqslant s \leqslant S} = (\boldsymbol{E}^{\mathrm{H}} \boldsymbol{f}_s)_{1 \leqslant s \leqslant S}, (c_s)_{1 \leqslant s \leqslant S} = \boldsymbol{0}$

< □ > < 同 >

Simulation settings

- ▶ 3 Tesla Siemens Trio magnet with L = 32 channel receiver coil
- \blacktriangleright Reconstruction of sagittal views of a 3D anatomical image with 256×256 pixels
- ▶ Reference image $\bar{\rho}$ defined as the reconstruction result from a non-accelerated acquisition (R = 1)
- ▶ Different sampling patterns with R = 5 acceleration factor
- ► Circular complex Gaussian noise with zero-mean and covariance matrices $\Lambda_{\ell} = \sigma^2 I_{\lfloor K/R \rfloor}$, $\ell \in \{1, \ldots, L\}$, $\sigma^2 = 6 \times 10^9$
- $(f_s)_{1 \le s \le S}$ (S = K) corresponds to an orthonormal wavelet basis using Symmlet filters of length 10 and 3 resolution levels

Effect of the sensitivity matrices

Moduli of the images corresponding to $(S_{\ell}\bar{\rho})_{1\leqslant\ell\leqslant L}$ for 8 channels out of 32.

Different types of subsampling

3-12-2015 24 / 34

< □ > < □ > < □ > < □ >

	SNR (dB)			
Sampling pattern	Slide No 70	Slice No 82	Slice No 121	
Poly1	21.15	19.96	20.89	
Poly2	20.32	19.34	20.07	
Poly3	19.43	18.53	19.18	
Poly4	18.47	17.50	18.35	
Poly5	17.67	16.95	17.52	
Uniform	21.02	19.71	20.68	
π	20.46	19.31	20.08	
Radial	20.27	19.20	20.01	
Spiral	20.35	19.17	20.03	
Regular	19.18	18.13	18.66	

SNR values for various subsampling strategies using 3MG and ℓ_2 - ℓ_1 regularization

< □ > < □ > < □ > < □ >

Slice No 70: Moduli of the original image $\bar{\rho}$ (a) and the reconstructed one (b) with SNR = 21.15 dB using Poly1 sampling, 3MG algorithm and $\ell_2 - \ell_1$ regularization.

Slice No 82: Moduli of the original image $\bar{\rho}$ (a) and the reconstructed one (b) with SNR = 19.95 dB using Poly1 sampling, 3MG algorithm and $\ell_2 - \ell_1$ regularization.

Slice No 121: Moduli of the original image $\bar{\rho}$ (a) and the reconstructed one (b) with SNR = 20.89 dB using Poly1 sampling, 3MG algorithm and $\ell_2 - \ell_1$ regularization.

Decomp.	Algorithm	Penalization	SNR (dB)		
			Slice No 70	Slice No 82	Slice No 121
	M+LFBF	ℓ_1	21.15	19.96	20.89
	CPCV	ℓ_1	21.15	19.96	20.89
	ADMM	ℓ_1	21.15	19.96	20.89
Wav. basis	3MG	ℓ_2 - ℓ_1	21.15	19.96	20.89
	3MG	ℓ_2 - ℓ_0 (H)	21.09	20.05	20.97
	3MG	ℓ_2 - ℓ_0 (W)	21.21	20.17	21.10
	3MG	ℓ_2 - ℓ_0 (G)	21.33	20.27	21.20
Redundant	3MG	ℓ_2 - ℓ_1	21.67	20.46	21.39
wav. frame	3MG	ℓ_2 - ℓ_0 (G)	22.10	20.94	21.84

Reconstruction results for several optimization and regularization strategies using two different decompositions (Poly1 subsampling pattern)

SNR evolution as a function of computation time

3-12-2015 28 / 34

Error $\|m{x}_k - \hat{m{x}}\|$ as a function of computation time

Outline

1 Introduction

Proposed optimization method

- Preliminaries
- Proposed algorithm
- Convergence result

3 Application to CS-PMRI

- Model
- Simulation results

Online algorithm

Conclusion

3-12-2015

30 / 34

S3MG

• Stochastic version for solving online/adaptive problems

Estimation error along time, for various sparse adaptive filtering strategies

- The parameters of each tested method are optimized manually.
- The Stochastic Majorize-Minimize Memory gradient (S3MG) algorithm leads to a minimal estimation error, while benefiting from good tracking properties.

オモトオモト

Outline

1 Introduction

Proposed optimization method

- Preliminaries
- Proposed algorithm
- Convergence result

3 Application to CS-PMRI

- Model
- Simulation results

Online algorithm

5 Conclusion

Conclusion

- Majorize-Minimize Memory Gradient algorithm for optimization of smooth nonconvex complex-valued functions.
- Application to Parallel Magnetic Resonance Imaging
 ~> Faster than standard proximal techniques

- Future work
 - → Application to other inverse problems (CEA-LETI: microscopy imaging)
 - $\rightsquigarrow \ \text{Non-smooth case}$

Some references ...

L. Chaâri, J.-C. Pesquet, A. Benazza-Benyahia and Ph. Ciuciu,

A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging Medical Image Analysis, vol. 15, pp. 185-201, Apr. 2011.

E. Chouzenoux, J. Idier and S. Moussaoui

A Majorize-Minimize strategy for subspace optimization applied to image restoration IEEE Transactions on Image Processing, vol. 20, no 6, pp. 1517-1528, June 2011

E. Chouzenoux, A. Jezierska, J.-C. Pesquet and H. Talbot

A Majorize-Minimize subspace approach for ℓ_2 - ℓ_0 image regularization SIAM Journal on Imaging Science, vol. 6, no 1, pp. 563–591, Jan. 2013.

E. Chouzenoux, J.-C. Pesquet and A. Florescu.

A Stochastic 3MG Algorithm with Application to 2D Filter Identification European Signal Processing Conference (EUSIPCO 2014), pp. 1587-1591, Lisboa, Portugal, 1-5 Sept. 2014.

A. Florescu, E. Chouzenoux, J.-C. Pesquet, P. Ciuciu and S. Ciochina

A Majorize-Minimize memory gradient method for complex-valued inverse problems Signal Processing, Special issue on Image Restoration and Enhancement: Recent Advances and Applications, vol. 103, pp. 285-295, Oct. 2014.